1
To get the 2s complement, change all 1 bits to 0s and all 0 bits to 1s, and add 1 to the result. So the 2s complement of the 8-bit binary number 10001011 is the binary integer 01110101. If you want that in decimal, then remember that each place value column is twice the value of the place value column to its right, and the rightmost place value column for an integer is 1. Thus 01110101 in decimal is 64 + 32 + 16 + 4 + 1 = 117 (And 10001011 as a signed 8-bit binary integer represents the decimal integer -117.)
If you mean: 4(2s-1) = 7s+12 then the value of s works out as 16
Using 4 bits the signed range of numbers is -8 to 7. When working with signed numbers one bit is the sign bit, thus with 4 bits this leaves 3 bits for the value. With 3 bits there are 8 possible values, which when using 2s complement have ranges: for non-negative numbers these are 0 to 7; for negative numbers these are -1 to -8. Thus the range for signed 4 bit numbers is -8 to 7.
The closest value is the actual value which is 85*25 = 2125. No other value can get closer.
8-bit 2s complement representation of -19 is 11101101 For 1s complement invert all the bits. For 2s complement add 1 to the 1s complement: With 8-bits: 19 � 0001 0011 1s � 1110 1100 2s � 1110 1100 + 1 = 1110 1101
1
Complementary angles sum to give 90 degrees. Therefore the complement to an 85 degree angle is a 5 degree angle.
-15 is 11111111 and 2s com is 1111 0001
To get the 2s complement, change all 1 bits to 0s and all 0 bits to 1s, and add 1 to the result. So the 2s complement of the 8-bit binary number 10001011 is the binary integer 01110101. If you want that in decimal, then remember that each place value column is twice the value of the place value column to its right, and the rightmost place value column for an integer is 1. Thus 01110101 in decimal is 64 + 32 + 16 + 4 + 1 = 117 (And 10001011 as a signed 8-bit binary integer represents the decimal integer -117.)
If you mean: 4(2s-1) = 7s+12 then the value of s works out as 16
What is the difference between the place value of the 2s in 8 234 260
They are: 85 degrees and 175 degrees respectively
To find the 2s complement invert the bits and add 1: 98 = 1100010 = ...0000 0110 0010 (written in complete nybbles with leading 0 bits) → 2's complement: ...1111 1001 1101 + 1 = ...1111 1001 1110 Every bit in front of the first bit is a 1 (the exact number will depend upon the number of bytes used to store the number).
You can detect overflow if the result turns out to be negative (which is the same as checking to see if the sign bit is 1). For example if you tried to add 5 and 6 in to 4-bit 2s complement, you would get 0101 + 0110 = 1011, which is a negative number since the sign bit (the 1 on the left) is a 1. This is an overflow.
Using 4 bits the signed range of numbers is -8 to 7. When working with signed numbers one bit is the sign bit, thus with 4 bits this leaves 3 bits for the value. With 3 bits there are 8 possible values, which when using 2s complement have ranges: for non-negative numbers these are 0 to 7; for negative numbers these are -1 to -8. Thus the range for signed 4 bit numbers is -8 to 7.
(1234)hex=(0001 0010 0011 0100)2 (DA57)hex=(1101 1010 0101 0111)2 Taking, (1234)hex=(0001 0010 0011 0100)2 =(1110 1101 1100 1011) -1s complement =(1110 1101 1100 1100) -2s complement Now ,add 2s complement of (1234)hex with (DA57)hex, we get 1110 1101 1100 1100 + 1101 1010 0101 0111 1 1100 1000 0010 0011 There is a Carry bit Since,carry is generated.so,no is negative Then take 2s complement of above no.Thus ,we get 0011 0111 1101 1101=(37DD)hex (1234)hex -(DA57)hex =37DD)hex