answersLogoWhite

0

The zero of a f (function) is an x-value that corresponds to where the y-value is zero on the functions graph or the x-intercepts. Functions can have multiple zeroes or no real zeroes at all, depending on the equation.

Still curious? Ask our experts.

Chat with our AI personalities

JordanJordan
Looking for a career mentor? I've seen my fair share of shake-ups.
Chat with Jordan
EzraEzra
Faith is not about having all the answers, but learning to ask the right questions.
Chat with Ezra
CoachCoach
Success isn't just about winning—it's about vision, patience, and playing the long game.
Chat with Coach
More answers

The zero of a f (function) is an x-value that corresponds to where the y-value is zero on the functions graph or the x-intercepts. Functions can have multiple zeroes or no real zeroes at all, depending on the equation.

User Avatar

Daphnee Stark

Lvl 9
3y ago
User Avatar

Add your answer:

Earn +20 pts
Q: Is f(x) a function
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Other Math

What is fx in math?

[fx] is a function of x, it usually used in graphs.


Does the Casio fx-300 have a graphing function?

No. You should look to the FX-9860GII for a graphing model that has Natural Input AND Natural Output on it's display.


What best describes the function below fx equals 2x2-3x plus 1?

B- It is a many-to-one function


Which statement best describes the function below fx equals x3-x2-9x 9?

A cubic.


What is domain and range of random variable?

Let S denote the sample space underlying a random experiment with elements s 2 S. A random variable, X, is defined as a function X(s) whose domain is S and whose range is a set of real numbers, i.e., X(s) 2 R1. Example A: Consider the experiment of tossing a coin. The sample space is S = fH; Tg. The function X(s) = ½ 1 if s = H ¡1 if s = T is a random variable whose domain is S and range is f¡1; 1g. Example B: Let the set of all real numbers between 0 and 1 be the sample space, S. The function X(s) = 2s ¡ 1 is a random variable whose domain is S and range is set of all real numbers between ¡1 and 1. A discrete random variable is one whose range is a countable set. The random variable defined in example A is a discrete randowm variable. A continuous random variable is one whose range is not a countable set. The random variable defined in Example B is a continiuos random varible. A mixed random variable contains aspects of both these types. For example, let the set of all real numbers between 0 and 1 be the sample space, S. The function X(s) = ½ 2s ¡ 1 if s 2 (0; 1 2 ) 1 if s 2 [ 1 2 ; 1) is a mixed random variable with domain S and range set that includes set of all real numbers between ¡1 and 0 and the number 1. Cummulative Distribution Function Given a random variable X, let us consider the event fX · xg where x is any real number. The probability of this event, i.e., Pr(X · x), is simply denoted by FX(x) : FX(x) = Pr(X(s) · x); x 2 R1: The function FX(x) is called the probability or cumulative distribution fuction (CDF). Note that this CDF is a function of both the outcomes of the random experiment as embodied in X(s) and the particular scalar variable x. The properties of CDF are as follows: ² Since FX(x) is a probability, its range is limited to the interval: 0 · FX(x) · 1. ² FX(x) is a non-decreasing function in x, i.e., x1 < x2 Ã! FX(x1) · FX(x2): 1 ² FX(¡1) = 0 and FX(1) = 1. ² For continuous random variables, the CDF fX(x) is a unifromly continuous function in x, i.e., lim x!xo FX(x) = FX(xo): ² For discrete random variables, the CDF is in general of the form: FX(x) = X xi2X(s) piu(x ¡ xi); x 2 R1; where the sequence pi is called the probability mass function and u(x) is the unit step function. Probability Distribution Function The derivative of the CDF FX(x), denoted as fX(x), is called the probability density function (PDF) of the random variable X, i.e. fX(x) = dF(x) dx ; x 2 R1: or, equivalently the CDF can be related to the PDF via: FX(x) = Z x ¡1 fX(u)du; x 2 R1: Note that area under the PDF curve is unity, i.e., Z 1 ¡1 fX(u)du = FX(1) ¡ FX(¡1) = 1 ¡ 0 = 1 In general the probability of a random variable X(s) taking values in the range x 2 [a; b] is given by: Pr(x 2 [a; b]) = Z b a fX(x)dx = FX(b) ¡ FX(a): For discrete random variables the PDF takes the general form: fX(x) = X xi2X(s) pi±(x ¡ xi): Specifically for continuous random variables: Pr(x = xo) = FX(x+ o ) ¡ FX(x¡o ) = 0: 2