No. The expected value is the mean!
No. Standard deviation is the square root of the mean of the squared deviations from the mean. Also, if the mean of the data is determined by the same process as the deviation from the mean, then you loose one degree of freedom, and the divisor in the calculation should be N-1, instead of just N.
Mean and average are the same.
Standard deviation has the same unit as the data set unit.
Standard deviation is a measure of the scatter or dispersion of the data. Two sets of data can have the same mean, but different standard deviations. The dataset with the higher standard deviation will generally have values that are more scattered. We generally look at the standard deviation in relation to the mean. If the standard deviation is much smaller than the mean, we may consider that the data has low dipersion. If the standard deviation is much higher than the mean, it may indicate the dataset has high dispersion A second cause is an outlier, a value that is very different from the data. Sometimes it is a mistake. I will give you an example. Suppose I am measuring people's height, and I record all data in meters, except on height which I record in millimeters- 1000 times higher. This may cause an erroneous mean and standard deviation to be calculated.
no the standard deviation is not equal to mean of absolute distance from the mean
The mean average deviation is the same as the mean deviation (or the average deviation) and they are, by definition, 0.
The mean absolute deviation for a set of data is a measure of the spread of data. It is calculated as follows:Find the mean (average) value for the set of data. Call it M.For each observation, O, calculate the deviation, which is O - M.The absolute deviation is the absolute value of the deviation. If O - M is positive (or 0), the absolute value is the same. If not, it is M - O. The absolute value of O - M is written as |O - M|.Calculate the average of all the absolute deviations.One reason for using the absolute value is that the sum of the deviations will always be 0 and so will provide no useful information. The mean absolute deviation will be small for compact data sets and large for more spread out data.
No. The average of the deviations, or mean deviation, will always be zero. The standard deviation is the average squared deviation which is usually non-zero.
I am pretty sure they are not.
No.
absolute deviation is a difference between say two numbers. The result has the same units as the two numbers have. Relative deviation is a ratio and so it is a pure number without any units.
If repeated samples are taken from a population, then they will not have the same mean each time. The mean itself will have some distribution. This will have the same mean as the population mean and the standard deviation of this statistic is the standard deviation of the mean.
It means that the distribution has a mode (or a common value) which differs from the mean. It could also mean that there are two common values at the same distance on either side of the mean.
Standard error of the mean (SEM) and standard deviation of the mean is the same thing. However, standard deviation is not the same as the SEM. To obtain SEM from the standard deviation, divide the standard deviation by the square root of the sample size.
Everyone is average, whether that average is the mean, median, or mode.
Zero. Since all the numbers are the same, there is no deviation.