No. Standard deviation is not an absolute value.
The standard deviation is often written as a single positive value (magnitude), but it is really a binomial, and it equals both the positive and negative of the given magnitude.
For example, if you are told that for a population the SD is 5.0, it really means +5.0 and -5.0 from the population mean. It defines a region within the distribution, starting at the lower magnitude (-5.0) increasing to zero (the mean), and another region starting at zero (the mean) and increasing up to the upper magnitude (+5.0). Both regions together define the (continuous) region of standard deviation from the mean value.
If I have understood the question correctly, despite your challenging spelling, the standard deviation is the square root of the average of the squared deviations while the mean absolute deviation is the average of the deviation. One consequence of this difference is that a large deviation affects the standard deviation more than it affects the mean absolute deviation.
No. The standard deviation is not exactly a value but rather how far a score deviates from the mean.
No standard deviation can not be bigger than maximum and minimum values.
No. The expected value is the mean!
The range, median, mean, variance, standard deviation, absolute deviation, skewness, kurtosis, percentiles, quartiles, inter-quartile range - take your pick. It would have been simpler to ask which value IS in the data set!
The absolute value of the standard score becomes smaller.
No, as its name suggests, it is a relative measure.
No.
There is 1) standard deviation, 2) mean deviation and 3) mean absolute deviation. The standard deviation is calculated most of the time. If our objective is to estimate the variance of the overall population from a representative random sample, then it has been shown theoretically that the standard deviation is the best estimate (most efficient). The mean deviation is calculated by first calculating the mean of the data and then calculating the deviation (value - mean) for each value. If we then sum these deviations, we calculate the mean deviation which will always be zero. So this statistic has little value. The individual deviations may however be of interest. See related link. To obtain the means absolute deviation (MAD), we sum the absolute value of the individual deviations. We will obtain a value that is similar to the standard deviation, a measure of dispersal of the data values. The MAD may be transformed to a standard deviation, if the distribution is known. The MAD has been shown to be less efficient in estimating the standard deviation, but a more robust estimator (not as influenced by erroneous data) as the standard deviation. See related link. Most of the time we use the standard deviation to provide the best estimate of the variance of the population.
no the standard deviation is not equal to mean of absolute distance from the mean
If I have understood the question correctly, despite your challenging spelling, the standard deviation is the square root of the average of the squared deviations while the mean absolute deviation is the average of the deviation. One consequence of this difference is that a large deviation affects the standard deviation more than it affects the mean absolute deviation.
The relative standard deviation is the absolute value of the ration of the sample mean to the sample standard deviation. This value appears to be quite small; however, without comparative data it is difficult to know what to make of it. In some contexts it might even be considered large.
Some measures:Range,Interquartile range,Interpercentile ranges,Mean absolute deviation,Variance,Standard deviation.Some measures:Range,Interquartile range,Interpercentile ranges,Mean absolute deviation,Variance,Standard deviation.Some measures:Range,Interquartile range,Interpercentile ranges,Mean absolute deviation,Variance,Standard deviation.Some measures:Range,Interquartile range,Interpercentile ranges,Mean absolute deviation,Variance,Standard deviation.
if no absolute value is used the sum is zero.
The absolute value is used in the calculation of mean absolute deviation to eliminate negative differences. By taking the absolute value of each difference, it ensures that all values are positive, allowing for an accurate measure of the average deviation from the mean.
The mean is the average value and the standard deviation is the variation from the mean value.
Percent deviation is a measure of how much a value deviates, or differs, from a standard or expected value. It is calculated by taking the absolute difference between the measured value and the standard value, dividing by the standard value, and then multiplying by 100 to express it as a percentage.