Rational.
That is a logarithm to the base "e", where "e" is a number that is approximately 2.718.
An antilogarithm is the number of which the given number is the logarithm (to a given base). If x is the logarithm of y, then y is the antilogarithm of x.
An algebraic number is one which is a root of a polynomial equation with rational coefficients. All rational numbers are algebraic numbers. Irrational numbers such as square roots, cube roots, surds etc are algebraic but there are others that are not. A transcendental number is such a number: an irrational number that is not an algebraic number. pi and e (the base of the exponential function) are both transcendental.
It is called a rational number. The rational numbers are closed under the operations of addition, subtraction, multiplication, and division (not dividing by 0). The fact that it is not terminating is not important at all. In fact, if we use other bases besides base 10, we will see that the set of numbers that are rational or irrational doesn't change. However, if we use another base, for example base 3, then the number 1/3 in base 3 can be represented with a terminating "decimal" (technically not decimal). The set of rational numbers that have terminating "decimals" depends on the base.
An irrational number is a number that can't be expressed by a fraction having integers in both its numerator and denominator. A rational number can be.A rational number is defined to be a number that can be expressed as the ratio of two integers. An irrational number is any real number that is not rational. A rational number is a number that can be expressed as a fraction. An irrational number is one that can not.Some examples of rational numbers would be 5, 1.234, 5/3, or -3Some examples of irrational numbers would be π, the square root of 2, the golden ratio, or the square root of 3.A rational number is a number that either has a finite end or a repeating end, such as .35 or 1/9 (which is .1111111 repeating).An irrational number has an infinite set of numbers after the decimal that never repeat, such a the square root of 2 or pi.A rational number is one that can be expressed as a ratio of two integers, x and y (y not 0). An irrational number is one that cannot be expressed in such a form.In terms of decimal numbers, a rational number has a decimal representation that is terminating or [infinitely] recurring. The decimal representation for an irrational is neither terminating nor recurring. (Recurring decimals are also known as repeating decimals.)A rational number is a number that can be expressed as a fraction. An irrational number is one that can not.Some examples of rational numbers would be 5, 1.234, 5/3, or -3Some examples of irrational numbers would be π, the square root of 2, the golden ratio, or the square root of 3.An irrational number is a number that can't be expressed by a fraction having integers in both its numerator and denominator. A rational number can be.A rational number can be represented by a ratio of whole numbers. An irrational number cannot. There are many more irrational numbers than there are rational numbersRational numbers are numbers that can be written as a fraction. Irrational numbers cannot be expressed as a fraction.A rational number can be expressed as a fraction, with integers in the numerator and the denominator. An irrational number can't be expressed in that way. Examples of irrational numbers are most square roots, cubic roots, etc., the number pi, and the number e.A rational number can always be written as a fractionwith whole numbers on the top and bottom.An irrational number can't.A rational number can always be written as a fraction with whole numbers on top and bottom.An irrational number can't.Any number that you can completely write down, with digits and a decimal pointor a fraction bar if you need them, is a rational number.A rational number can be expressed as a fraction whereas an irrational can not be expressed as a fraction.Just look at the definition of a rational number. A rational number is one that can be expressed as a fraction, with integers (whole numbers) in the numerator and the denominator. Those numbers that can't be expressed that way - for example, the square root of 2 - are said to be irrational.A rational number is any number that can be written as a ratio or fraction. If the decimal representation is finite orhas a repeating set of decimals, the number is rational.Irrational numbers cannot be reached by any finite use of the operators +,-, / and *. These numbers include square roots of non-square numbers, e.g.√2.Irrational numbers have decimal representations that never end or repeat.Transcendental numbers are different again - they are irrational, but cannot be expressed even with square roots or other 'integer exponentiation'. They are the numbers in between the numbers between the numbers between the integers. Famous examples includee or pi (π).By definition: a rational number can be expressed as a ratio of two integers, the second of which is not zero. An irrational cannot be so expressed.One consequence is that a rational number can be expressed as a terminating or infinitely recurring decimal whereas an irrational cannot.This consequence is valid whatever INTEGER base you happen to select: decimal, binary, octal, hexadecimal or any other - although for non-decimal bases, you will have the "binary point" or "octal point" in place of the decimal point and so on.A rational number can be expressed as a fraction whereas an irrational number can't be expressed as a fractionRational numbers can be expressed as a ratio of two integers, x/y, where y is not 0. Conventionally, y is taken to be greater than 0 but that is not an essential element of the definition. An irrational number is one for which such a pair of integers does not exist.Rational numbers can be expressed as one integer over another integer (a "ratio" of the two integers) whereas irrational numbers cannot.Also, the decimal representation ofa rational number will either: terminate (eg 31/250 = 0.124); orgo on forever repeating a sequence of digits at the end (eg 41/330 = 0.1242424... [the 24 repeats]);whereas an irrational number will not terminate, nor will there be a repeating sequence of digits at the end (eg π = 3.14159265.... [no sequence repeats]).Rational numbers are numbers that keeps on going non-stop, for example pie. Irrational numbers end. Its as simple as that! Improved Answer:-Rational numbers can be expressed as fractions whereas irrational numbers can't be expressed as fractions.a rational number can be expressed as a fraction in the form a/b (ie as a fraction).a irrational number cannot be expressed as a fraction (e.g. pi, square root of 2 etc)Rational numbers can be represented as fractions.That is to say, if we can write the number as a/b where a and b are any two integers and b is not zero. If we cannot do this, then the number is irrational.For example, .5 is a rational number because we can write it as 5/10=1/2The square root of 2 is irrational because there do not exist integers a and b suchthat square root of 2 equals a/b.Rational numbers can be expressed as fractions whereas irrational numbers can't be expressed as fractions.
Usually it is, yes. Of course, in some special cases the result of taking a logarithm is rational - such as taking the base-10 logarithm of 100.
Because it's an irrational number, and that's what "irrational" means. There are lots of other irrational numbers, like the base of the natural logarithm e or the square root of 2.In fact, there are more irrational numbers than rational numbers. A lot more.Infinitely more, even. There are an infinite number of rational numbers, but the infinite number of irrational numbers is a higher infinity than the infinity of rational numbers.
The number is called e, and it is approximately equal to 2.718.
There are an infinite number of irrational numbers. Here are some: e (the base for natural logarithms), pi, sqrt(2), sqrt(3), sqrt(5), square root of any number that is not a perfect square: perfect squares are 12 22 32 42 52 etc. which equals 1 4 9 16 25 ..... natural logarithm of any rational number (greater than zero) will be irrational. but not 1, since ln(1) = 0, which is not irrational. Note the logarithm of a negative number is a complex number, and the logarithm of zero is negative infinity.
If a^x = n, where a is a positive real number other than 1 and x is a rational number then logarithm is defined as, logarithm of n to the base a is x. Then is written as log n base a = x.
ln x is the natural logarithm of x, that is the logarithm to base e where e is euler's number (an irrational number that starts 2.71828...). If y = ln x then x = ey
A logarithm is the exponent to which a number called a base is raised to become a different specific number. A common logarithm uses 10 as the base and a natural logarithm uses the number e (approximately 2.71828) as the base.
Rational and irrational numbers are both real numbers. Rational numbers are those that can be expressed as a ratio of two integers, a/b where b is not 0. An irrational number cannot. Equivalently, a rational number can be expressed as a terminating or recurring decimal, an irrational number cannot. Or more generally, a rational number can be expressed as a terminating or recurring sequence of digits in any integer base (eg binary or hexadecimal), an irrational number cannot. Although there are an infinite number of rationals and irrationals, the order of infinity of irrationals is greater.
Yes. Take any rational number p. Let a = any number that is not a power of 10, so that log(a) is irrational. and let b = p/log(a). log(a) is irrational so 1/log(a) must be irrational. That is, both log(a) and log(b) are irrational. But log(a)*log(b) = log(a)*[p/log(a)] = p which is rational. In the above case all logs are to base 10, but any other base can be used.
The square root of any number which is not a perfect square;The cube root of any number which is not a perfect cube;Pi, the circular constant.e, the natural logarithm base number.
The "base of the natural logarithm" is the number known as "e". It is approximately 2.718.
That is a logarithm to the base "e", where "e" is a number that is approximately 2.718.