Usually expressed as,
Y = 3X2
============same thing as X * X, XX without multiplicative symbol, so yes it is exponential
If your equation is y=0.682x then yes
If the question is, Is y = x4 an exponential function ? then the answer is no.An exponential function is one where the variable appears as an exponent.So, y = 4x is an exponential function.
x = 0 and y = 4
Since the logarithmic function is the inverse of the exponential function, then we can say that f(x) = 103x and g(x) = log 3x or f-1(x) = log 3x. As we say that the logarithmic function is the reflection of the graph of the exponential function about the line y = x, we can also say that the exponential function is the reflection of the graph of the logarithmic function about the line y = x. The equations y = log(3x) or y = log10(3x) and 10y = 3x are different ways of expressing the same thing. The first equation is in the logarithmic form and the second equivalent equation is in exponential form. Notice that a logarithm, y, is an exponent. So that the question becomes, "changing from logarithmic to exponential form": y = log(3x) means 10y = 3x, where x = (10y)/3.
The equation 6 + y = 12 is a simple equation in one variable. If you add 6 to both sides of the equals sign, you get y = 18, and that is the solution.
If your equation is y=0.682x then yes
If you mean y = 2^x, then no, it is not a linear equation. This is an exponential equation. The graph of this exponential equation would start out near zero on the left-hand side (there is a horizontal asymptote at y = 0) and would gradually increase as you move to the right: overall, it has a curved shaped. If you mean y = 2x, then yes, it is a linear equation.
If the question is, Is y = x4 an exponential function ? then the answer is no.An exponential function is one where the variable appears as an exponent.So, y = 4x is an exponential function.
2
x = 0 and y = 4
The equation is y + 2 = 12.
No, only equations that can be modeled as straight lines can appear in this form. For example, population growth would need at least an exponential graph i.e. y = ex and could not be even slightly modeled by the equation y = mx+b
An equation where y = 81
Since the logarithmic function is the inverse of the exponential function, then we can say that f(x) = 103x and g(x) = log 3x or f-1(x) = log 3x. As we say that the logarithmic function is the reflection of the graph of the exponential function about the line y = x, we can also say that the exponential function is the reflection of the graph of the logarithmic function about the line y = x. The equations y = log(3x) or y = log10(3x) and 10y = 3x are different ways of expressing the same thing. The first equation is in the logarithmic form and the second equivalent equation is in exponential form. Notice that a logarithm, y, is an exponent. So that the question becomes, "changing from logarithmic to exponential form": y = log(3x) means 10y = 3x, where x = (10y)/3.
The equation 6 + y = 12 is a simple equation in one variable. If you add 6 to both sides of the equals sign, you get y = 18, and that is the solution.
y = 4(2x) is an exponential function. Domain: (-∞, ∞) Range: (0, ∞) Horizontal asymptote: x-axis or y = 0 The graph cuts the y-axis at (0, 4)
yes