Take log each side, but most important to take log of 9.7 log(9.7) = 0.9867717343 now by the law of logs 10^0.9867717343 = 9.7 ( so the 10^X = 9.7 is the exponential form )
6 = 61 6 x 100
A product in exponential form is:x2= x multiplied x
exponential form of 6000000000 = 6 x 109
2*log(15) = log(x) 152 = x; its equivalent logarithmic form is 2 = log15 x (exponents are logarithms) then, it is equivalent to 2log 15 = log x, equivalent to log 152 = log x (the power rule), ... 2 = log15 x 2 = log x/log 15 (using the change-base property) 2log 15 = log x Thus, we can say that 152 = x is equivalent to 2*log(15) = log(x) (equivalents to equivalents are equivalent)
Take log each side, but most important to take log of 9.7 log(9.7) = 0.9867717343 now by the law of logs 10^0.9867717343 = 9.7 ( so the 10^X = 9.7 is the exponential form )
The graph of is shifted 3 units down and 2 units right. Which equation represents the new graph?
Since the logarithmic function is the inverse of the exponential function, then we can say that f(x) = 103x and g(x) = log 3x or f-1(x) = log 3x. As we say that the logarithmic function is the reflection of the graph of the exponential function about the line y = x, we can also say that the exponential function is the reflection of the graph of the logarithmic function about the line y = x. The equations y = log(3x) or y = log10(3x) and 10y = 3x are different ways of expressing the same thing. The first equation is in the logarithmic form and the second equivalent equation is in exponential form. Notice that a logarithm, y, is an exponent. So that the question becomes, "changing from logarithmic to exponential form": y = log(3x) means 10y = 3x, where x = (10y)/3.
X1 = -81
6 = 61 6 x 100
An exponential function is of the form y = a^x, where a is a constant. The inverse of this is x = a^y --> y = ln(x)/ln(a), where ln() means the natural log.
A product in exponential form is:x2= x multiplied x
2x2x3x5x5x5 in exponential form is: 22 x 3 x 53
f(x) = bX is not an exponential function so the question makes no sense.
Logb (x)=y is called the logarithmic form where logb means log with base b So to put this in exponential form we let b be the base and y the exponent by=x Here is an example log2 8=3 since 23 =8. In this case the term on the left is the logarithmic form while the one of the right is the exponential form.
exponential form of 6000000000 = 6 x 109
If the log of x equals -3 then x = 10-3 or 0.001or 1/1000.