Probably an arc, but it is not possible to be certain because there is no information on where or what point b and c are..
The answer will depend on the location of the points B, P and C.
.75 V
3
It is a RayA ray is part of a line which is finite in one direction, but infinite in the other. It can be defined by two points, the initial point, A, and one other, B. The ray is all the points in the line segment between A and B together with all points, C, on the line through A and B such that the points appear on the line in the order A, B, C.Source: Faber, Richard L. (1983). Foundations of Euclidean and Non-Euclidean Geometry. New York, United States: Marcel Dekker. ISBN 0-8247-1748-1.
-2
An arc.
exactly three times as far from point A as they are from point B?
Three noncollinear points A, B, and C determine exactly three lines. Each pair of points can be connected to form a line: line AB between points A and B, line AC between points A and C, and line BC between points B and C. Thus, the total number of lines determined by points A, B, and C is three.
distance
The analogy for d-B to r is like comparing the distance between two points on a straight line (d-B) to the radius of a circle (r). Just as the radius measures the distance from the center of a circle to any point on its circumference, d-B represents the shortest distance between two points on a line.
The answer will depend on the location of the points B, P and C.
a circle 9 cm from point b I was co fused by this but you just do a diagram and write this
Two points determine a unique line. Therefore, there are infinitely many circles that can pass through two given points. This is because a circle can be defined by its center, which can lie anywhere along the perpendicular bisector of the line segment connecting the two points.
.75 V
3
This starts with the collocation circle to go through the three points on the curve. First write the equation of a circle. Then write three equations that force the collocation circle to go through the three points on the curve. Last, solve the equations for a, b, and r.
It is a RayA ray is part of a line which is finite in one direction, but infinite in the other. It can be defined by two points, the initial point, A, and one other, B. The ray is all the points in the line segment between A and B together with all points, C, on the line through A and B such that the points appear on the line in the order A, B, C.Source: Faber, Richard L. (1983). Foundations of Euclidean and Non-Euclidean Geometry. New York, United States: Marcel Dekker. ISBN 0-8247-1748-1.