answersLogoWhite

0

The product is still irrational. Proof by contradiction:

Let X and Y be an element of Q (the set of rational numbers). Thus xy can be written in the form p/q, where p, q are an element of Z (the set of integers), and q is NOT zero. Since X is rational (given in question), it can be written as r/s. Again, r,s are elements of Z and s is not equal to zero.

This gives Y=ps/qr, which is also an element of Q (rationals). However, we know that Y is not rational (given in the question), hence this is the contradiction. Hence the product of a rational and an irrational is irrational.

User Avatar

Wiki User

14y ago

Still curious? Ask our experts.

Chat with our AI personalities

RafaRafa
There's no fun in playing it safe. Why not try something a little unhinged?
Chat with Rafa
LaoLao
The path is yours to walk; I am only here to hold up a mirror.
Chat with Lao
FranFran
I've made my fair share of mistakes, and if I can help you avoid a few, I'd sure like to try.
Chat with Fran
More answers

as0*root2=0 .i.e rational

User Avatar

Wiki User

14y ago
User Avatar

Add your answer:

Earn +20 pts
Q: Product of irrational and rational
Write your answer...
Submit
Still have questions?
magnify glass
imp