81
(45) x (43) = 48
4a7 / 3a3 = ( 4/3 ) x ( a7/a3 ) = 4a4 / 3
104 = 10000
3/4
Simpley, 2(to the power of)3 as there are 3 2's after the first :-)
= 20^3
7
(45) x (43) = 48
4^3√32-3^3√108+^3√256
i^1=i i^2=-1 i^3=-i i^4=1 and so forth 15 divided by 4 leaves a remainder of 3 i^3=-i
4a7 / 3a3 = ( 4/3 ) x ( a7/a3 ) = 4a4 / 3
1
Using the symbol "^" for power. (-3)^1 * (-3)^(1/3) = (-3)^(4/3).
4-3 = 1
3p9
104 = 10000
To simplify the expression (\frac{3^{-4} \cdot 2^3 \cdot 3^2}{2^4 \cdot 3^n}), first combine the powers of 3 in the numerator: (3^{-4 + 2} = 3^{-2}). The expression becomes (\frac{3^{-2} \cdot 2^3}{2^4 \cdot 3^n}). Next, simplify the powers of 2: (\frac{2^3}{2^4} = 2^{-1}). Thus, the simplified expression is (\frac{2^{-1} \cdot 3^{-2}}{3^n} = \frac{2^{-1}}{3^{n+2}}).