The sum of n consecutive integers is divisible by n when n is odd. It is not divisible by n when n is even. So in this case the answer is it is divisible by 25! Proof: Case I - n is odd: We can substitute 2m+1 (where m is an integer) for n. This lets us produce absolutely any odd integer. Let's look at the sum of any 2m+1 consecutive integers. a + a+d + a+2d + a+3d + ... + a+(n-1)d = n(first+last)/2 (In our problem, the common difference is 1 and this is an arithmetic series.) a + (a+1) + (a+2) + ... + (a+2m) = (2m+1)(2a+2m)/2 = (2m+1)(a+m) It is obvious that this is divisible by 2m+1, our original odd number. That proves case I when n is odd, not for case when it is even. Case II - n is even: We can substitute 2m for n. We have another arithmetic series: a + (a+1) + (a+2) + ... + (a+2m-1) = (2m)(2a+2m-1)/2 = m(2a+2m-1) It is not too hard to prove that this is not divisible by 2m... try it!
Chat with our AI personalities
12 and 13 :)
The integers are 24, 25 and 26.
25 and 26
42 + 52 = 16 + 25 = 41
That isn't possible. The three consecutive number are assumed to be integers; the sum of three consecutive integers is always a multiple of 3 (try it out).