a norm
Chat with our AI personalities
Domain Kingdom Phylum Class Order Family Genus Species
Suppose two classes are going on a field trip to the zoo. There are 28 people in one class and 22 people in the other class. The teachers want to order lunch for all of the students, and in each lunch, they want there to be 2 packages of crackers. How many packages of crackers should the teachers order? Well, here is where order of operations comes in: The teachers want to order 2*(28+22) packages of graham crackers. If the teachers didn't use order of operations, then instead of ending up with 100 packages of graham crackers, the teachers would end up with 78 packages of graham crackers, and some of the kids would be very unhappy. The above example demonstrates one kind of "order of operations." Here is another example which uses what perhaps you really mean when you say "order of operations." Suppose on that same bus trip each teacher also wants one package of crackers. Then, the teachers write this down mathematically as: 2 + 2*(28+22) = 2 + 2*(50) Using correct "order of operations" the teachers will figure out that they should order 102 packages of crackers. If instead the teachers were to not use "order of operations," they would order 200 crackers, and that would just be too much.
species genus family order class phylum kingdom
"another" implies that you already have one example. In order to answer the question it might just help to know what that is.
No.For example, a hexagon with equal angles and sides of lengths a,b,a,b,a,b has rotational symmetry of order 3, but it has no reflection symmetry.No.For example, a hexagon with equal angles and sides of lengths a,b,a,b,a,b has rotational symmetry of order 3, but it has no reflection symmetry.No.For example, a hexagon with equal angles and sides of lengths a,b,a,b,a,b has rotational symmetry of order 3, but it has no reflection symmetry.No.For example, a hexagon with equal angles and sides of lengths a,b,a,b,a,b has rotational symmetry of order 3, but it has no reflection symmetry.