cos pi over four equals the square root of 2 over 2 This value can be found by looking at a unit circle. Cos indicates it is the x value of the point pi/4 which is (square root 2 over 2, square root 2 over 2)
cos(195) = cos(180 + 15) = cos(180)*cos(15) - sin(180)*sin(15) = -1*cos(15) - 0*sim(15) = -cos(15) = -cos(60 - 45) = -[cos(60)*cos(45) + sin(60)*sin(45)] = -(1/2)*sqrt(2)/2 - sqrt(3)/2*sqrt(2)/2 = - 1/4*sqrt(2)*(1 + sqrt3) or -1/4*[sqrt(2) + sqrt(6)]
The function sec(x) is the secant function. It is related to the other functions by the expression 1/cos(x). It is not the inverse cosine or arccosine, it is one over the cosine function. Ex. cos(pi/4)= sqrt(2)/2 therefore secant is sec(pi/4)= 1/sqrt(2)/2 or 2/sqrt(2).
cos(a)cos(b)-sin(a)sin(b)=cos(a+b) a=7pi/12 and b=pi/6 a+b = 7pi/12 + pi/6 = 7pi/12 + 2pi/12 = 9pi/12 We want to find cos(9pi/12) cos(9pi/12) = cos(3pi/4) cos(3pi/4)= cos(pi-pi/4) cos(pi)cos(pi/4)-sin(pi)sin(pi/4) cos(pi)=-1 sin(pi)=0 cos(pi/4) = √2/2 sin(pi/4) =√2/2 cos(pi)cos(pi/4)-sin(pi)sin(pi/4) = - cos(pi/4) = -√2/2
An "inverse operation" is an operation that is in a certain way the "opposite" of another operation. For example, subtraction is the inverse of addition, division is the inverse of multiplication. Performing the inverse operation will restore the initial value. Example : 6 divided by 3 equals 2, multiplied by 3 is 6 again.
The range of cosine is [-1, 1] which is, therefore, the domain of cos-1. As a result, cos-1(2) is not defined.
-5
hi,the value of cos 60 is 1/2
No. This is because absolute values are always positive. For example: |2|=2 absolute value Additive inverse means the opposite sign of that number so 2's additive inverse is -2. But sometimes if the number is -2 then the additive inverse equals the absolute value. therefore the answer is sometimes
cos pi over four equals the square root of 2 over 2 This value can be found by looking at a unit circle. Cos indicates it is the x value of the point pi/4 which is (square root 2 over 2, square root 2 over 2)
cos 315 degrees is 4th quadrant same as cos (-45) degrees which is +0.7071
1-C2/2
It is: cos(15) = (sq rt of 6+sq rt of 2)/4
Oh honey, cos 45 degrees is just 0.7071. It's like asking me what color the sky is - it's blue, duh. So, go ahead and plug that number into your trig functions and strut your stuff with that knowledge.
cos(195) = cos(180 + 15) = cos(180)*cos(15) - sin(180)*sin(15) = -1*cos(15) - 0*sim(15) = -cos(15) = -cos(60 - 45) = -[cos(60)*cos(45) + sin(60)*sin(45)] = -(1/2)*sqrt(2)/2 - sqrt(3)/2*sqrt(2)/2 = - 1/4*sqrt(2)*(1 + sqrt3) or -1/4*[sqrt(2) + sqrt(6)]
f(x) = 2 cos 3x The amplitude: A = |2| = 2 The maximum value of the function: 2 The minimum value of the function: -2 The range: [-2, 2]
The radical answer is sqrt(3)/2. (0.86602540378443864676372317075294)