answersLogoWhite

0

-5

User Avatar

Velda Stanton

Lvl 10
4y ago

What else can I help you with?

Related Questions

If the csc equals 2 divided by 7 what is cos?

How is it possible that the value of cosecant is less than 1 (2/7)?


What is the exact value of cos 7.5 pie divided by 6?

1.25


Verify that sin minus cos plus 1 divided by sin plus cos subtract 1 equals sin plus 1 divided by cos?

[sin - cos + 1]/[sin + cos - 1] = [sin + 1]/cosiff [sin - cos + 1]*cos = [sin + 1]*[sin + cos - 1]iff sin*cos - cos^2 + cos = sin^2 + sin*cos - sin + sin + cos - 1iff -cos^2 = sin^2 - 11 = sin^2 + cos^2, which is true,


What is Cos 2 x divided by cos x?

cos 2x = cos2 x - sin2 x = 2 cos2 x - 1; whence, cos 2x / cos x = 2 cos x - (1 / cos x) = 2 cos x - sec x.


What is cos 60?

hi,the value of cos 60 is 1/2


How do you solve sinx divided by 1 plus cosx plus cosx divided by sinx?

sin x/(1+cos x) + cos x / sin x Multiply by sin x (1+cos x) =[(sin^2 x + cos x(1+cos x) ] / sin x (1+cos x) = [(sin^2 x + cos x + cos^2 x) ] / sin x (1+cos x) sin^2 x + cos^2 x = 1 = (1+cos x) / sin x (1+cos x) = 1/sin x


Value of Cos 2 Cos inverse 0.8?

If the angles are measured in radians then the answer is -0.2678


How do you verify 1 divided by cos to the second theta minus tan to the second theta equals cos to the second theta plus 1 divided by csc to the second theta?

2


What divided by cosine squared theta equals one?

The equation that satisfies the condition "what divided by cosine squared theta equals one" is simply the expression itself. If we let ( x ) be the quantity, then the equation can be expressed as ( \frac{x}{\cos^2 \theta} = 1 ). Solving for ( x ) gives ( x = \cos^2 \theta ). Thus, ( \cos^2 \theta ) divided by ( \cos^2 \theta ) equals one.


What is the value of cos pie4?

cos pi over four equals the square root of 2 over 2 This value can be found by looking at a unit circle. Cos indicates it is the x value of the point pi/4 which is (square root 2 over 2, square root 2 over 2)


What is the value of cos2 67-sin2 23?

To find the value of ( \cos^2 67^\circ - \sin^2 23^\circ ), we can use the identity ( \cos^2 \theta = 1 - \sin^2 \theta ). Since ( \sin 23^\circ = \cos 67^\circ ) (because ( 23^\circ + 67^\circ = 90^\circ )), we have ( \sin^2 23^\circ = \cos^2 67^\circ ). Thus, ( \cos^2 67^\circ - \sin^2 23^\circ = \cos^2 67^\circ - \cos^2 67^\circ = 0 ). Therefore, the value is ( 0 ).


Value of cos 315?

cos 315 degrees is 4th quadrant same as cos (-45) degrees which is +0.7071