answersLogoWhite

0

23.5 N 81 W is Varadero, Cuba.

User Avatar

Wiki User

8y ago

Still curious? Ask our experts.

Chat with our AI personalities

ProfessorProfessor
I will give you the most educated answer.
Chat with Professor
DevinDevin
I've poured enough drinks to know that people don't always want advice—they just want to talk.
Chat with Devin
BlakeBlake
As your older brother, I've been where you are—maybe not exactly, but close enough.
Chat with Blake

Add your answer:

Earn +20 pts
Q: Were is 23½N and 81W
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Other Math

What is the nth term and sum of n terms of 6 13 24 39?

The simplest rule that will generate the 4 terms, and the nth term isUn = 2n2 + n + 3Then Sn = Sum for k = 1 to n of (2k2 + k + 3)= 2*sum(k2) + sum(k) + sum(3)= 2*n*(n+1)*(2n+1)/6 + n*(n+1)/2 + 3*n= (2n3 + 3n2 + n)/3 + (n2 + n)/2 + 3n= (4n3 + 9n2 + 23n)/6The simplest rule that will generate the 4 terms, and the nth term isUn = 2n2 + n + 3Then Sn = Sum for k = 1 to n of (2k2 + k + 3)= 2*sum(k2) + sum(k) + sum(3)= 2*n*(n+1)*(2n+1)/6 + n*(n+1)/2 + 3*n= (2n3 + 3n2 + n)/3 + (n2 + n)/2 + 3n= (4n3 + 9n2 + 23n)/6The simplest rule that will generate the 4 terms, and the nth term isUn = 2n2 + n + 3Then Sn = Sum for k = 1 to n of (2k2 + k + 3)= 2*sum(k2) + sum(k) + sum(3)= 2*n*(n+1)*(2n+1)/6 + n*(n+1)/2 + 3*n= (2n3 + 3n2 + n)/3 + (n2 + n)/2 + 3n= (4n3 + 9n2 + 23n)/6The simplest rule that will generate the 4 terms, and the nth term isUn = 2n2 + n + 3Then Sn = Sum for k = 1 to n of (2k2 + k + 3)= 2*sum(k2) + sum(k) + sum(3)= 2*n*(n+1)*(2n+1)/6 + n*(n+1)/2 + 3*n= (2n3 + 3n2 + n)/3 + (n2 + n)/2 + 3n= (4n3 + 9n2 + 23n)/6


What is the next number 8 6 9 10 4 11?

Any number can be the next number. It is easy to find a rule based on a polynomial of order 6 such that the first six numbers are as listed in the question followed by the chosen next number. There are also non-polynomial solutions. Short of reading the mind of the person who posed the question, there is no way of determining which of the infinitely many solutions is the "correct" one.The simplest rule, based on a polynomial of order 5, isT(n) = (23n^5 - 335n^4 + 1715n^3 - 3685n^2 + 3122n + 120)/120 where n = 1, 2, 3, ...Accordingly, the next number is T(7) = 99.