Y-2x1 would merely be Y-2.
∫[√(4x) / x] dx = ∫(2 / √x)dx = 2∫(x-1/2) dx = 2(2x1/2 + C) = 4√x + C
352.83 = (3 x 100) + (5 x 10) + (2 x 1) + (8/10) + (3/100)
2
22 + .056
2x (1+3)=(2x1+(2x3)
2
2x1/2 of 1/2x1/4 of 120 of 500 = 1 x 1/8 x 60,000 = 7500
f'(x)xy=yx(y-1) f'(x)2=2x1=2x
Y-2x1 would merely be Y-2.
∫[√(4x) / x] dx = ∫(2 / √x)dx = 2∫(x-1/2) dx = 2(2x1/2 + C) = 4√x + C
802.06 = (8 x 100) + (0 x 10) + (2 x 1) + (0/10) + (6/100)
352.83 = (3 x 100) + (5 x 10) + (2 x 1) + (8/10) + (3/100)
2
one seventh 2/7 x 1/2 = 2x1 / 7x2 = 2/14 = 1/7
2/7 x 1/3 = (2x1) / (7x3) = = 2/21
C 5 2 = 5! / (2! x 3!) = (5x4x3x2x1) / (2x1 x 3x2x1) = 10