answersLogoWhite

0


Best Answer

Step 1: Formulate the statement to be proven by induction.

Step 2: Show that there is at least one value of the natural numbers, n, for which the statement is true.

Step 3: Show that, if you assume it is true for any natural number m, greater or equal to n, then it must be true for the next value, m+1.

Then, by induction, you have proven that the statement (step 1) is true for all natural numbers greater than or equal to n. Note that n need not be 1.

User Avatar

Wiki User

15y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What are the steps in mathematical induction?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

What is mathematical induction?

Mathematical Induction is a process uses in College Algebra It can be used to prove that a sequence is equal to an equation For Example: 1+3+5+7+n+2=2n+1 there are 3 steps to mathematical induction the first includes proving that the equation is true for n=1 the second includes substituting k for every n-term the third involves substituting k+1 for every k-term to prove that both sides are equal


Give examples for application of mathematical induction?

fsvxcxcv


What is the proper mathematical steps in solving mathematical problems?

The steps vary A LOT depending on the specific problem.


What has the author Jussi Huppunen written?

Jussi Huppunen has written: 'High-speed solid-rotor induction machine' -- subject(s): Electric motors, Induction, Induction Electric motors, Mathematical models


What can justify the steps of a proof?

Mathematical logic.


What is proper mathematical solving in the mathematical problems?

The steps vary A LOT depending on the specific problem.


Induction is a kind of thinking you use to form general ideas and rules based on mathematical formulas?

False


Why mathematical induction is a deductive process?

"Mathematical induction" is a misleading name. Ordinarily, "induction" means observing that something is true in all known examples and concluding that it is always true. A famous example is "all swans are white", which was believed true for a long time. Eventually black swans were discovered in Australia. Mathematical induction is quite different. The principle of mathematical induction says that: * if some statement S(n) about a number is true for the number 1, and * the conditional statement S(k) true implies S(k+1) true, for each k then S(n) is true for all n. (You can start with 0 instead of 1 if appropriate.) This principle is a theorem of set theory. It can be used in deduction like any other theorem. The principle of definition by mathematical induction (as in the definition of the factorial function) is also a theorem of set theory. Although it is true that mathematical induction is a theorem of set theory, it is more true in spirit to say that it is built into the foundations of mathematics as a fundamental deductive principle. In set theory the Axiom of Infinity essentially contains the principle of mathematical induction. My reference for set theory as a foundation for mathematics is the classic text "Naive Set Theory" by Paul Halmos. Warning: This is an advanced book, despite the title. Set theory at this level really only makes sense after several years of college/university mathematics study.


Why are there so many mathematical steps required to determine SD?

Because when human mathematicians invented the concept of SD, they defined it as the result of that particular series of mathematical steps. If the steps were fewer or different, the result wouldn't be what they called SD.


Who contributed the principle of mathematical induction?

Euclid in 300 BCE, but possibly Plato in 370 BCE. See related link.


What is an algorithm in math?

A set of steps used to solve a mathematical computation.


What would you call a set of steps for solving a mathematical problem?

Algorithm