The null hypothesis cannot be accepted. Statistical tests only check whether differences in means are probably due to chance differences in sampling (the reason variance is so important). So if the p-value obtained by the data is larger than the significance level against which you are testing, we only fail to reject the null. If the p-value is lower than the significance level, the null hypothesis is rejected in favor of the alternative hypothesis.
Chat with our AI personalities
We have two types of hypothesis i.e., Null Hypothesis and Alternative Hypothesis. we take null hypothesis as the same statement given in the problem. Alternative hypothesis is the statement that is complementary to null hypothesis. When our calculated value is less than the tabulated value, we accept null hypothesis otherwise we reject null hypothesis.
The z-score is a statistical test of significance to help you determine if you should accept or reject the null-hypothesis; whereas the p-value gives you the probability that you were wrong to reject the null-hypothesis. (The null-hypothesis proposes that NO statistical significance exists in a set of observations).
If we reject the null hypothesis, we conclude that the alternative hypothesis which is the alpha risk is true. The null hypothesis is used in statistics.
you do not need to reject a null hypothesis. If you don not that means "we retain the null hypothesis." we retain the null hypothesis when the p-value is large but you have to compare the p-values with alpha levels of .01,.1, and .05 (most common alpha levels). If p-value is above alpha levels then we fail to reject the null hypothesis. retaining the null hypothesis means that we have evidence that something is going to occur (depending on the question)
The null hypothesis will not reject - it is a hypothesis and is not capable of rejecting anything. The critical region consists of the values of the test statistic where YOU will reject the null hypothesis in favour of the expressed alternative hypothesis.