two solutions
A system of linear equations can only have: no solution, one solution, or infinitely many solutions.
Equations with the same solution are called dependent equations, which are equations that represent the same line; therefore every point on the line of a dependent equation represents a solution. Since there is an infinite number of points on a line, there is an infinite number of simultaneous solutions. For example, 2x + y = 8 4x + 2y = 16 These equations are dependent. Since they represent the same line, all points that satisfy either of the equations are solutions of the system. A system of linear equations is consistent if there is only one solution for the system. A system of linear equations is inconsistent if it does not have any solutions.
By solving it. There is no single easy way to solve all equations; different types of equations required different methods. You have to learn separately how to solve equations with integer polynomials, rational equations (where polynomials can also appear in the denominator), equations with square roots and other roots, trigonometric equations, and others.Sometimes, the knowledge of a type of equations can help you quickly guess the number of solutions. Here are a few examples. An equation like:sin(x) = 0.5has an infinite number of solutions, because the sine function is periodic. An equation with a polynomial - well, in theory, you can factor a polynomial of degree "n" into "n" linear factors, meaning the polynomial can have "n" solutions. However, it may have multiple solutions, that is, some of the factors may be equal. Also, some of the solutions may be complex. A real polynomial of odd degree has at least one real solution.By solving it. There is no single easy way to solve all equations; different types of equations required different methods. You have to learn separately how to solve equations with integer polynomials, rational equations (where polynomials can also appear in the denominator), equations with square roots and other roots, trigonometric equations, and others.Sometimes, the knowledge of a type of equations can help you quickly guess the number of solutions. Here are a few examples. An equation like:sin(x) = 0.5has an infinite number of solutions, because the sine function is periodic. An equation with a polynomial - well, in theory, you can factor a polynomial of degree "n" into "n" linear factors, meaning the polynomial can have "n" solutions. However, it may have multiple solutions, that is, some of the factors may be equal. Also, some of the solutions may be complex. A real polynomial of odd degree has at least one real solution.By solving it. There is no single easy way to solve all equations; different types of equations required different methods. You have to learn separately how to solve equations with integer polynomials, rational equations (where polynomials can also appear in the denominator), equations with square roots and other roots, trigonometric equations, and others.Sometimes, the knowledge of a type of equations can help you quickly guess the number of solutions. Here are a few examples. An equation like:sin(x) = 0.5has an infinite number of solutions, because the sine function is periodic. An equation with a polynomial - well, in theory, you can factor a polynomial of degree "n" into "n" linear factors, meaning the polynomial can have "n" solutions. However, it may have multiple solutions, that is, some of the factors may be equal. Also, some of the solutions may be complex. A real polynomial of odd degree has at least one real solution.By solving it. There is no single easy way to solve all equations; different types of equations required different methods. You have to learn separately how to solve equations with integer polynomials, rational equations (where polynomials can also appear in the denominator), equations with square roots and other roots, trigonometric equations, and others.Sometimes, the knowledge of a type of equations can help you quickly guess the number of solutions. Here are a few examples. An equation like:sin(x) = 0.5has an infinite number of solutions, because the sine function is periodic. An equation with a polynomial - well, in theory, you can factor a polynomial of degree "n" into "n" linear factors, meaning the polynomial can have "n" solutions. However, it may have multiple solutions, that is, some of the factors may be equal. Also, some of the solutions may be complex. A real polynomial of odd degree has at least one real solution.
Yes.
Simultaneous equations have the same solutions.
The answers to equations are their solutions
If a system of equations is inconsistent, there are no solutions.
Equations do have solutions, sometimes they may be a little difficult to figure out.
They are straight line graphs that work out the solutions of 2 equations or simultaneous equations
Simultaneous equations have the same solutions
As there is no system of equations shown, there are zero solutions.
Simultaneous equations have the same solutions.
They are called simultaneous equations.
The system of equations can have zero solutions, one solution, two solutions, any finite number of solutions, or an infinite number of solutions. If it is a system of LINEAR equations, then the only possibilities are zero solutions, one solution, and an infinite number of solutions. With linear equations, think of each equation describing a straight line. The solution to the system of equations will be where these lines intersect (a point). If they do not intersect at all (or maybe two of the lines intersect, and the third one doesn't) then there is no solution. If the equations describe the same line, then there will be infinite solutions (every point on the line satisfies both equations). If the system of equations came from a real world problem (like solving for currents or voltages in different parts of a circuit) then there should be a solution, if the equations were chosen properly.
That means the same as solutions of other types of equations: a number that, when you replace the variable by that number, will make the equation true.Note that many trigonometric equations have infinitely many solutions. This is a result of the trigonometric functions being periodic.
These are two expressions, not equations. Expressions do not have solutions, only equations do. NB equations include the equals sign.