The modulus of a number relative to a base is the positive remainder when itis divided by that base. So -24 mod 7 = (-28 + 4) mod 7 = -28 mod 7 + 4 mod 7 = 4 mod 7 = 4while 24 mod 7 = (21 + 3) mod 7 = 21 mod 7 + 3 mod 7 = 3 mod 7 = 3.
The "mod" operator is the remainder from a division. Since you can't divide by zero, "mod zero" doesn't make sense, either (i.e., it is undefined).
Look at the powers of 5 mod 7: 5¹ mod 7 = 5 5² mod 7 = 5 × (5¹ mod 7) mod 7 = (5 × 5) mode 7 = 25 mod 7 = 4 5³ mod 7 = 5 × (5² mod 7) mod 7 = (5 × 4) mod 7 = 20 mod 7 = 6 5⁴ mod 7 = 5 × (5³ mod 7) mod 7 = (5 × 6) mod 7 = 30 mod 7 = 2 5⁵ mod 7 = 5 × (5⁴ mod 7) mod 7 = (5 × 2) mod 7 = 10 mod 7 = 3 5⁶ mod 7 = 5 × (5⁵ mod 7) mod 7 = (5 × 3) mod 7 = 15 mod 7 = 1 5⁷ mod 7 = 5 × (5⁶ mod 7) mod 7 = (5 × 1) mod 7 = 5 mod 7 = 5 At this point, it is obvious that the remainders will repeat the cycle {5, 4, 6, 2, 3, 1} There are 6 remainders in the cycle, so the remainder of 30 divided by 6 will tell you which remainder to use; if the remainder is 0, use the 6th element. 30 ÷ 6 = 5 r 0 →use the 6th element which is 1, so 5³⁰ ÷ 7 will have a remainder of 1. 1 ≡ 5³⁰ mod 7.
The remainder is 2. Knowing how to do modular arithmetic makes the problem much easier to solve. We say a number x has a value of k "mod" 7 if dividing x by 7 leaves a remainder of k. Multiples of 7 are equal to 0 mod 7 (they leave no remainder), and 32 is equal to 4 mod 7, because 32 / 7 = 4 remainder 4. The product of 100 5s is equal to 5 to the 100th power, or 5^100 in shorthand. Let us look at what the first few powers of 5 are equal to mod 7: 5^1 = 5 = 5 mod 7 5^2 = 25 = 4 mod 7 5^3 = 125 = 6 mod 7 5^4 = 625 = 2 mod 7 5^5 = 3125 = 3 mod 7 5^6 = 15625 = 1 mod 7 5^7 = 78125 = 5 mod 7 5^8 = 390625 = 4 mod 7 It looks as if we might have a repeating pattern, and indeed the next few powers of 5 are equal to 6, 2, and 3, confirming that 5^k = 5^(k-6) mod 7. This means that 5^100 has the same remainder after dividing by 7 as 5^94, which has the same remainder as 5^88, etc. etc. until we reach 5^4, which leaves a remainder of 2. Therefore by induction 5^100 leaves a remainder of 2. Hope this all makes sense.
There are: 3/3 = 6/6 because they both are equal to one
The modulus of a number relative to a base is the positive remainder when itis divided by that base. So -24 mod 7 = (-28 + 4) mod 7 = -28 mod 7 + 4 mod 7 = 4 mod 7 = 4while 24 mod 7 = (21 + 3) mod 7 = 21 mod 7 + 3 mod 7 = 3 mod 7 = 3.
The value assigned to the Integer answer variable will be 3. This is because 45 modulo 6 equals 3, so the value of the statement 45 Mod 6 is 3.
A number is divisible by 6 if it is divisible by 2 and 3. Look at 333-3 which is 330 The sum of the digits is 6 and it is even so it is divisible by 6 Now consider 222-2 which I picked because unlike 333, 222 has even digits. 222-2=220, one again even number so divisible by 2 but NOT divisible by 3 so NOT divisible by 6 So it look like this is not true for all n For any odd n, we have the following 1. nnn-n ends in 0 so it is even if we can show it is divisible by 3 we are done. but 777-7 is 770 which is NOT divisible by 3 so it is NOT true. For some n it is true, but not for all n... Now when will nnn-n be divisible by 3. only when n+n is a multiple of 3, ie n=33,66, 99 an that is it! So we could easily prove that nnn-n is divisible by 6 if and only if n=3,6,or 9 ----------------------------- If by nnn, you mean n3, a proof is as follows: n=0,1,2,3,4, or 5 (mod 6) If n=0 (mod 6), we have (0 (mod 6))((0(mod 6))2-1)=0 (mod 6). [Since the first term is zero] If n=1 (mod 6), we have (1 (mod 6))((1(mod 6))2-1)=0 (mod 6) [Since 1-1=0]. If n=2 (mod 6), we have (2 (mod 6))((2(mod 6))2-1)=(2*3) (mod 6) = 6 (mod 6)=0 (mod 6). If n=3 (mod 6), we have (3 (mod 6))((3(mod 6))2-1)=(3*8) (mod 6) = 24 (mod 6) = 0 (mod 6). If n=4 (mod 6), we have (4 (mod 6))((4(mod 6))2-1)=(4*15) (mod 6) = 60 (mod 6) = 0 (mod 6). If n=5 (mod 6), we have (5 (mod 6))((5(mod 6))2-1)=(5*24) (mod 6) = 120 (mod 6) = 0 (mod 6). If you're not comfortable with the modular arethmetic, you can substitue 6m+_, where the blank is each of the numbers 0 through 5 (since every number can be expressed either as a multiple of six, or as a multiple of six plus some number between 1 and 5 --the remainder when the number is divided by six). Taking our example with 5, you would get: (n)(n2-1) can be written as (6m+5)((6m+5)2-1), where m is an integer. Simplifying this, you get: (6m+5)((6m+5)2-1) (6m+5)((6m2+60m+25-1) 6m*6m2+6m*60m+6m*25-6m+5*6m2+5*60m+5*25+5(-1) 6m*6m2+6m*60m+6m*25-6m+5*6m2+5*60m+5*24 Since m is an integer and each term is divisible by 6, (n)(n2-1) is divisible by 6 for integers that can be expressed as 6m+5. You would then repeat the process for each of 0 through 4 to complete the proof. Clearly, if you are comfortable with it, modular arithmetic is the less cumbersome way to proceed.
The "mod" operator is the remainder from a division. Since you can't divide by zero, "mod zero" doesn't make sense, either (i.e., it is undefined).
The Mod Squad - 1968 Search and Destroy 3-6 was released on: USA: 27 October 1970
Look at the powers of 5 mod 7: 5¹ mod 7 = 5 5² mod 7 = 5 × (5¹ mod 7) mod 7 = (5 × 5) mode 7 = 25 mod 7 = 4 5³ mod 7 = 5 × (5² mod 7) mod 7 = (5 × 4) mod 7 = 20 mod 7 = 6 5⁴ mod 7 = 5 × (5³ mod 7) mod 7 = (5 × 6) mod 7 = 30 mod 7 = 2 5⁵ mod 7 = 5 × (5⁴ mod 7) mod 7 = (5 × 2) mod 7 = 10 mod 7 = 3 5⁶ mod 7 = 5 × (5⁵ mod 7) mod 7 = (5 × 3) mod 7 = 15 mod 7 = 1 5⁷ mod 7 = 5 × (5⁶ mod 7) mod 7 = (5 × 1) mod 7 = 5 mod 7 = 5 At this point, it is obvious that the remainders will repeat the cycle {5, 4, 6, 2, 3, 1} There are 6 remainders in the cycle, so the remainder of 30 divided by 6 will tell you which remainder to use; if the remainder is 0, use the 6th element. 30 ÷ 6 = 5 r 0 →use the 6th element which is 1, so 5³⁰ ÷ 7 will have a remainder of 1. 1 ≡ 5³⁰ mod 7.
The remainder is 2. Knowing how to do modular arithmetic makes the problem much easier to solve. We say a number x has a value of k "mod" 7 if dividing x by 7 leaves a remainder of k. Multiples of 7 are equal to 0 mod 7 (they leave no remainder), and 32 is equal to 4 mod 7, because 32 / 7 = 4 remainder 4. The product of 100 5s is equal to 5 to the 100th power, or 5^100 in shorthand. Let us look at what the first few powers of 5 are equal to mod 7: 5^1 = 5 = 5 mod 7 5^2 = 25 = 4 mod 7 5^3 = 125 = 6 mod 7 5^4 = 625 = 2 mod 7 5^5 = 3125 = 3 mod 7 5^6 = 15625 = 1 mod 7 5^7 = 78125 = 5 mod 7 5^8 = 390625 = 4 mod 7 It looks as if we might have a repeating pattern, and indeed the next few powers of 5 are equal to 6, 2, and 3, confirming that 5^k = 5^(k-6) mod 7. This means that 5^100 has the same remainder after dividing by 7 as 5^94, which has the same remainder as 5^88, etc. etc. until we reach 5^4, which leaves a remainder of 2. Therefore by induction 5^100 leaves a remainder of 2. Hope this all makes sense.
24 Hour Design - 2006 Mod Foyer 3-6 was released on: USA: 21 August 2007
No. A ratio can be expressed as a fraction. 6 to 3 can be written as 6/3 which is equal to 2. 3 to 6 can be written as 3/6, which is equal to 1/2.
3 over 4 isn't equal to 6.
Pi is not equal to 6. It is equal to 3.14159...
(6-6)-5 in mod 12