answersLogoWhite

0


Best Answer

It means distribution is flater then [than] a normal distribution and if kurtosis is positive[,] then it means that distribution is sharper then [than] a normal distribution. Normal (bell shape) distribution has zero kurtosis.

User Avatar

Wiki User

โˆ™ 2013-11-01 06:28:51
This answer is:
User Avatar
Study guides

Algebra

20 cards

A polynomial of degree zero is a constant term

The grouping method of factoring can still be used when only some of the terms share a common factor A True B False

The sum or difference of p and q is the of the x-term in the trinomial

A number a power of a variable or a product of the two is a monomial while a polynomial is the of monomials

โžก๏ธ
See all cards
3.81
โ˜†โ˜…โ˜†โ˜…โ˜†โ˜…โ˜†โ˜…โ˜†โ˜…
1765 Reviews

Add your answer:

Earn +20 pts
Q: What does a negative kurtosis mean?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

Is kurtosis equal to zero?

It can be negative, zero or positive.


What does the term kurtosis mean?

The Greek word "kurtosis", when translated to English, means the probability theory of any measure of the "peakedness" of a real valued random variable.


What is the values of the skewdness and kurtosis coefficient for the normal distribution 0 and 3 respectively?

No. Skewness is 0, but kurtosis is -3, not 3.No. Skewness is 0, but kurtosis is -3, not 3.No. Skewness is 0, but kurtosis is -3, not 3.No. Skewness is 0, but kurtosis is -3, not 3.


What is affected by extreme outliers?

The mean, variance, skewness, kurtosis and all higher moments of a distribution.


What is the between skewness and kurtosis?

While skewness is the measure of symmetry, or if one would like to be more precise, the lack of symmetry, kurtosis is a measure of data that is either peaked or flat relative to a normal distribution of a data set. * Skewness: A distribution is symmetric if both the left and right sides are the same relative to the center point. * Kurtosis: A data set that tends to have a distant peak near the mean value, have heavy tails, or decline rapidly is a measure of high kurtosis. Data sets with low Kurtosis would obviously be opposite with a flat mean at the top, and a distribution that is uniform.


What is kurtosis?

I will answer your question in a couple of ways. First as a concept: Kurtosis is a measure of whether the data are peaked or flat relative to a normal distribution. That is, data sets with high kurtosis tend to have a distinct peak near the mean, decline rather rapidly, and have heavy tails. Data sets with low kurtosis tend to have a flat top near the mean rather than a sharp peak. A uniform distribution would be the extreme case. Now as a mathematical formula: For univariate data Y1, Y2, ..., YN, the formula for kurtosis is:where is the mean, is the standard deviation, and N is the number of data points. You may find more information at this website: http://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm


What are the three types kurtosis?

mesokurtic leptokurtic platykurtic


What are some math words for the letter K?

kurtosis


What does kurtosis serve?

In probability theory and statistics, kurtosis (from the Greek word κυρτός, kyrtos or kurtos, meaning bulging) is a measure of the "peakedness" of the probability distribution of a real-valued random variable. Higher kurtosis means more of the variance is due to infrequent extreme deviations, as opposed to frequent modestly sized deviations. Sometimes kurtosis gets confused with skewness, so I have added links to both these terms.


What is the kurtosis of a normal distribution?

For N(0, 1) it is 3.


What is the relationship between the relative size of the starndard deviation and the kurtosis of a distribution?

It is inversely proportional; a larger standard deviation produces a small kurtosis (smaller peak, more spread out data) and a smaller standard deviation produces a larger kurtosis (larger peak, data more centrally located).


What are the differences between a platykurtic a mesokurtic and a leptokurtic distribution?

The kurtosis of a distribution is defined as the fourth central moment divided by the square of the second central moment. Unfortunately, this browser converts Greek characters to the Roman alphabet so I cannot use standard forms of equations but: Suppose that for a random variable X, E(X) = m (mu) and E[(X - E(X))2] = V = s2 (sigma-squared) then Kurtosis = E[(X - E(X))4]/s4. Excess Kurtosis is then Kurtosis - 3. If excess kurtosis < 0 the distribution is platykurtic. They have a peak that is lower than the Normal: the peak is flat and broad. The tails of the distribution are narrow. Uniform distributions are platykurtic. A mesokurtic distibution has excess kurtosis = 0. The Gaussian (Normal) distribution - whatever its parameters - is mesokurtic. The binomial with probability of success close to 1/2 is also considered to be mesokurtic. If excess kurtosis is > 0 the distribution is leptokurtic. Leptokurtic distributions have a high and narrow peak. A good example is the Student's t distribution.

People also asked