No. Skewness is 0, but kurtosis is -3, not 3.No. Skewness is 0, but kurtosis is -3, not 3.No. Skewness is 0, but kurtosis is -3, not 3.No. Skewness is 0, but kurtosis is -3, not 3.
It is inversely proportional; a larger standard deviation produces a small kurtosis (smaller peak, more spread out data) and a smaller standard deviation produces a larger kurtosis (larger peak, data more centrally located).
I will answer your question in a couple of ways. First as a concept: Kurtosis is a measure of whether the data are peaked or flat relative to a normal distribution. That is, data sets with high kurtosis tend to have a distinct peak near the mean, decline rather rapidly, and have heavy tails. Data sets with low kurtosis tend to have a flat top near the mean rather than a sharp peak. A uniform distribution would be the extreme case. Now as a mathematical formula: For univariate data Y1, Y2, ..., YN, the formula for kurtosis is:where is the mean, is the standard deviation, and N is the number of data points. You may find more information at this website: http://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm
differentiate the three types of variables from one another
random, clumping and uniform
No. Skewness is 0, but kurtosis is -3, not 3.No. Skewness is 0, but kurtosis is -3, not 3.No. Skewness is 0, but kurtosis is -3, not 3.No. Skewness is 0, but kurtosis is -3, not 3.
Kurtosis is a measure of the "peakedness" or thickness of the tails of a distribution compared to a normal distribution. A positive kurtosis indicates a distribution with heavier tails and a sharper peak, while a negative kurtosis indicates lighter tails and a flatter peak. Kurtosis helps to understand the shape of a distribution and the likelihood of extreme outcomes.
It means distribution is flater then [than] a normal distribution and if kurtosis is positive[,] then it means that distribution is sharper then [than] a normal distribution. Normal (bell shape) distribution has zero kurtosis.
The Greek word "kurtosis", when translated to English, means the probability theory of any measure of the "peakedness" of a real valued random variable.
In probability theory and statistics, kurtosis (from the Greek word κυρτός, kyrtos or kurtos, meaning bulging) is a measure of the "peakedness" of the probability distribution of a real-valued random variable. Higher kurtosis means more of the variance is due to infrequent extreme deviations, as opposed to frequent modestly sized deviations. Sometimes kurtosis gets confused with skewness, so I have added links to both these terms.
It can be negative, zero or positive.
It is inversely proportional; a larger standard deviation produces a small kurtosis (smaller peak, more spread out data) and a smaller standard deviation produces a larger kurtosis (larger peak, data more centrally located).
For N(0, 1) it is 3.
While skewness is the measure of symmetry, or if one would like to be more precise, the lack of symmetry, kurtosis is a measure of data that is either peaked or flat relative to a normal distribution of a data set. * Skewness: A distribution is symmetric if both the left and right sides are the same relative to the center point. * Kurtosis: A data set that tends to have a distant peak near the mean value, have heavy tails, or decline rapidly is a measure of high kurtosis. Data sets with low Kurtosis would obviously be opposite with a flat mean at the top, and a distribution that is uniform.
The kurtosis of a distribution is defined as the fourth central moment divided by the square of the second central moment. Unfortunately, this browser converts Greek characters to the Roman alphabet so I cannot use standard forms of equations but: Suppose that for a random variable X, E(X) = m (mu) and E[(X - E(X))2] = V = s2 (sigma-squared) then Kurtosis = E[(X - E(X))4]/s4. Excess Kurtosis is then Kurtosis - 3. If excess kurtosis < 0 the distribution is platykurtic. They have a peak that is lower than the Normal: the peak is flat and broad. The tails of the distribution are narrow. Uniform distributions are platykurtic. A mesokurtic distibution has excess kurtosis = 0. The Gaussian (Normal) distribution - whatever its parameters - is mesokurtic. The binomial with probability of success close to 1/2 is also considered to be mesokurtic. If excess kurtosis is > 0 the distribution is leptokurtic. Leptokurtic distributions have a high and narrow peak. A good example is the Student's t distribution.
I will answer your question in a couple of ways. First as a concept: Kurtosis is a measure of whether the data are peaked or flat relative to a normal distribution. That is, data sets with high kurtosis tend to have a distinct peak near the mean, decline rather rapidly, and have heavy tails. Data sets with low kurtosis tend to have a flat top near the mean rather than a sharp peak. A uniform distribution would be the extreme case. Now as a mathematical formula: For univariate data Y1, Y2, ..., YN, the formula for kurtosis is:where is the mean, is the standard deviation, and N is the number of data points. You may find more information at this website: http://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm
What are the three types of IED