2 = 5*0 + 2 so [the quotient is 0 and] the remainder is 2
that is 2 mod 5 = 2.
On spreadsheets, the formula is usually "=MOD(2,5)"
2 = 5*0 + 2 so [the quotient is 0 and] the remainder is 2
that is 2 mod 5 = 2.
On spreadsheets, the formula is usually "=MOD(2,5)"
2 = 5*0 + 2 so [the quotient is 0 and] the remainder is 2
that is 2 mod 5 = 2.
On spreadsheets, the formula is usually "=MOD(2,5)"
2 = 5*0 + 2 so [the quotient is 0 and] the remainder is 2
that is 2 mod 5 = 2.
On spreadsheets, the formula is usually "=MOD(2,5)"
Chat with our AI personalities
2 = 5*0 + 2 so [the quotient is 0 and] the remainder is 2
that is 2 mod 5 = 2.
On spreadsheets, the formula is usually "=MOD(2,5)"
Oh, dude, when you do 2 mod 5, you're basically asking, like, what's the remainder when you divide 2 by 5. So, you divide 2 by 5, and you're left with 2. That's it. Easy peasy lemon squeezy.
Oh honey, 2 mod 5 is simply 2. It's like asking how many fingers you have on one hand - the answer is right in front of you. No need to overcomplicate things, darling.
In modular arithmetic, the expression "2 mod 5" refers to the remainder when 2 is divided by 5. In this case, when 2 is divided by 5, the remainder is 2. Therefore, 2 mod 5 is equal to 2.
5 mod 2 is a mathematical expression which is the REMAINDER of dividing 5 by 2 (i.e 1).
Mod is the abbreviation of Modulus or Modulo.
Look at the powers of 5 mod 7: 5¹ mod 7 = 5 5² mod 7 = 5 × (5¹ mod 7) mod 7 = (5 × 5) mode 7 = 25 mod 7 = 4 5³ mod 7 = 5 × (5² mod 7) mod 7 = (5 × 4) mod 7 = 20 mod 7 = 6 5⁴ mod 7 = 5 × (5³ mod 7) mod 7 = (5 × 6) mod 7 = 30 mod 7 = 2 5⁵ mod 7 = 5 × (5⁴ mod 7) mod 7 = (5 × 2) mod 7 = 10 mod 7 = 3 5⁶ mod 7 = 5 × (5⁵ mod 7) mod 7 = (5 × 3) mod 7 = 15 mod 7 = 1 5⁷ mod 7 = 5 × (5⁶ mod 7) mod 7 = (5 × 1) mod 7 = 5 mod 7 = 5 At this point, it is obvious that the remainders will repeat the cycle {5, 4, 6, 2, 3, 1} There are 6 remainders in the cycle, so the remainder of 30 divided by 6 will tell you which remainder to use; if the remainder is 0, use the 6th element. 30 ÷ 6 = 5 r 0 →use the 6th element which is 1, so 5³⁰ ÷ 7 will have a remainder of 1. 1 ≡ 5³⁰ mod 7.
8
The remainder is 2. Knowing how to do modular arithmetic makes the problem much easier to solve. We say a number x has a value of k "mod" 7 if dividing x by 7 leaves a remainder of k. Multiples of 7 are equal to 0 mod 7 (they leave no remainder), and 32 is equal to 4 mod 7, because 32 / 7 = 4 remainder 4. The product of 100 5s is equal to 5 to the 100th power, or 5^100 in shorthand. Let us look at what the first few powers of 5 are equal to mod 7: 5^1 = 5 = 5 mod 7 5^2 = 25 = 4 mod 7 5^3 = 125 = 6 mod 7 5^4 = 625 = 2 mod 7 5^5 = 3125 = 3 mod 7 5^6 = 15625 = 1 mod 7 5^7 = 78125 = 5 mod 7 5^8 = 390625 = 4 mod 7 It looks as if we might have a repeating pattern, and indeed the next few powers of 5 are equal to 6, 2, and 3, confirming that 5^k = 5^(k-6) mod 7. This means that 5^100 has the same remainder after dividing by 7 as 5^94, which has the same remainder as 5^88, etc. etc. until we reach 5^4, which leaves a remainder of 2. Therefore by induction 5^100 leaves a remainder of 2. Hope this all makes sense.
4. Find the remainder when 21990 is divided by 1990. Solution: Let N = 21990 Here, 1990 can be written as the product of two co-prime factors as 199 and 10. Let R1 ≡ MOD(21990, 199) According the the Fermet's Theorem, MOD(ap, p) ≡ a . ∴ MOD(2199, 199) ≡ 2. ∴ MOD((2199)10, 199) ≡ MOD(210, 199) ∴ MOD(21990, 199) ≡ MOD(1024, 199) ≡ 29 ≡ R1. Let R2 ≡ MOD(21990, 10) ∴ R2 ≡ 2 × MOD(21989, 5) Cancelling 2 from both sides. Now, MOD(21989, 5) ≡ MOD(2 × 21988, 5) ≡ MOD(2, 5) × MOD((22)994, 5) Also MOD(4994, 5) ≡ (-1)994 = 1 & MOD(2, 5) ≡ 2 ∴ MOD(21989, 5) ≡ 2 × 1 ∴ R2 ≡ 2 × 2 = 4. ∴ N leaves 29 as the remainder when divided by 199 and 4 as the remainder when divided by 10. Let N1 be the least such number which also follow these two properties i.e. leaves 29 as the remainder when divided by 199 and 4 as the remainder when divided by 10 ∴ N1 ≡ 199p + 29 = 10q + 4 (where, p and q are natural numbers) ∴ 199p + 25 = q 10 Of course, the 5 is the least value of p at which the above equation is satisfied, Correspondingly, q = 102. ∴ N1 = 1024. ∴ Family of the numbers which leaves 29 as the remainder when divided by 199 and 4 as the remainder when divided by 10 can be given by f(k) = 1024 + k × LCM(199,10) = 1024 + k × 1990 N is also a member of the family. ∴ N = 21990 = 1024 + k × 1990 ∴ MOD(21990, 1990) ≡ 1024.
No because it is impossible. Let mod(x.3) denote the remainder when x is divided by 3. Let n be any integer. Then mod(n,3) = 0,1 or 2. When mod(n,3) = 0, mod(n2,3) = 0 When mod(n,3) = 1, mod(n2,3) = 1 When mod(n,3) = 2, mod(n2,3) = 4 and, equivalently mod(n2,3) = 1. So, there are no integers whose squar leaves a remainder of 2 when divided by 3.