2p + 11p + 5 = 13p + 5 which does not factor. If the expression had been 2p2 + 11p + 5 then this can be factored, 2p2 + 11p + 5 = (2p + 1)(p + 5)
3p+7 = 16+2p 3p-2p = 16-7 p = 9
3p = 2p + 12 subtract 2p from both sides 3p - 2p = 2p - 2p + 12 1p = 12 p = 12 this is how you solve this problem.
It equals 2p because p+p=2p.
It can be done in 162 ways, viz: 1 × 20p, 1 × 10p, 1 × 5p 1 × 20p, 1 × 10p, 2 × 2p, 1 × 1p 1 × 20p, 1 × 10p, 1 × 2p, 3 × 1p 1 × 20p, 1 × 10p, 5 × 1p 1 × 20p, 3 × 5p 1 × 20p, 2 × 5p, 2 × 2p, 1 × 1p 1 × 20p, 2 × 5p, 1 × 2p, 3 × 1p 1 × 20p, 2 × 5p, 5 × 1p 1 × 20p, 1 × 5p, 5 × 2p 1 × 20p, 1 × 5p, 4 × 2p, 2 × 1p 1 × 20p, 1 × 5p, 3 × 2p, 4 × 1p 1 × 20p, 1 × 5p, 2 × 2p, 6 × 1p 1 × 20p, 1 × 5p, 1 × 2p, 8 × 1p 1 × 20p, 1 × 5p, 10 × 1p 1 × 20p, 7 × 2p, 1 × 1p 1 × 20p, 6 × 2p, 3 × 1p 1 × 20p, 5 × 2p, 5 × 1p 1 × 20p, 4 × 2p, 7 × 1p 1 × 20p, 3 × 2p, 9 × 1p 1 × 20p, 2 × 2p, 11 × 1p 1 × 20p, 1 × 2p, 13 × 1p 1 × 20p, 15 × 1p 3 × 10p, 1 × 5p 3 × 10p, 2 × 2p, 1 × 1p 3 × 10p, 1 × 2p, 3 × 1p 3 × 10p, 5 × 1p 2 × 10p, 3 × 5p 2 × 10p, 2 × 5p, 2 × 2p, 1 × 1p 2 × 10p, 2 × 5p, 1 × 2p, 3 × 1p 2 × 10p, 2 × 5p, 5 × 1p 2 × 10p, 1 × 5p, 5 × 2p 2 × 10p, 1 × 5p, 4 × 2p, 2 × 1p 2 × 10p, 1 × 5p, 3 × 2p, 4 × 1p 2 × 10p, 1 × 5p, 2 × 2p, 6 × 1p 2 × 10p, 1 × 5p, 1 × 2p, 8 × 1p 2 × 10p, 1 × 5p, 10 × 1p 2 × 10p, 7 × 2p, 1 × 1p 2 × 10p, 6 × 2p, 3 × 1p 2 × 10p, 5 × 2p, 5 × 1p 2 × 10p, 4 × 2p, 7 × 1p 2 × 10p, 3 × 2p, 9 × 1p 2 × 10p, 2 × 2p, 11 × 1p 2 × 10p, 1 × 2p, 13 × 1p 2 × 10p, 15 × 1p 1 × 10p, 5 × 5p 1 × 10p, 4 × 5p, 2 × 2p, 1 × 1p 1 × 10p, 4 × 5p, 1 × 2p, 3 × 1p 1 × 10p, 4 × 5p, 5 × 1p 1 × 10p, 3 × 5p, 5 × 2p 1 × 10p, 3 × 5p, 4 × 2p, 2 × 1p 1 × 10p, 3 × 5p, 3 × 2p, 4 × 1p 1 × 10p, 3 × 5p, 2 × 2p, 6 × 1p 1 × 10p, 3 × 5p, 1 × 2p, 8 × 1p 1 × 10p, 3 × 5p, 10 × 1p 1 × 10p, 2 × 5p, 7 × 2p, 1 × 1p 1 × 10p, 2 × 5p, 6 × 2p, 3 × 1p 1 × 10p, 2 × 5p, 5 × 2p, 5 × 1p 1 × 10p, 2 × 5p, 4 × 2p, 7 × 1p 1 × 10p, 2 × 5p, 3 × 2p, 9 × 1p 1 × 10p, 2 × 5p, 2 × 2p, 11 × 1p 1 × 10p, 2 × 5p, 1 × 2p, 13 × 1p 1 × 10p, 2 × 5p, 15 × 1p 1 × 10p, 1 × 5p, 10 × 2p 1 × 10p, 1 × 5p, 9 × 2p, 2 × 1p 1 × 10p, 1 × 5p, 8 × 2p, 4 × 1p 1 × 10p, 1 × 5p, 7 × 2p, 6 × 1p 1 × 10p, 1 × 5p, 6 × 2p, 8 × 1p 1 × 10p, 1 × 5p, 5 × 2p, 10 × 1p 1 × 10p, 1 × 5p, 4 × 2p, 12 × 1p 1 × 10p, 1 × 5p, 3 × 2p, 14 × 1p 1 × 10p, 1 × 5p, 2 × 2p, 16 × 1p 1 × 10p, 1 × 5p, 1 × 2p, 18 × 1p 1 × 10p, 1 × 5p, 20 × 1p 1 × 10p, 12 × 2p, 1 × 1p 1 × 10p, 11 × 2p, 3 × 1p 1 × 10p, 10 × 2p, 5 × 1p 1 × 10p, 9 × 2p, 7 × 1p 1 × 10p, 8 × 2p, 9 × 1p 1 × 10p, 7 × 2p, 11 × 1p 1 × 10p, 6 × 2p, 13 × 1p 1 × 10p, 5 × 2p, 15 × 1p 1 × 10p, 4 × 2p, 17 × 1p 1 × 10p, 3 × 2p, 19 × 1p 1 × 10p, 2 × 2p, 21 × 1p 1 × 10p, 1 × 2p, 23 × 1p 1 × 10p, 25 × 1p 7 × 5p 6 × 5p, 2 × 2p, 1 × 1p 6 × 5p, 1 × 2p, 3 × 1p 6 × 5p, 5 × 1p 5 × 5p, 5 × 2p 5 × 5p, 4 × 2p, 2 × 1p 5 × 5p, 3 × 2p, 4 × 1p 5 × 5p, 2 × 2p, 6 × 1p 5 × 5p, 1 × 2p, 8 × 1p 5 × 5p, 10 × 1p 4 × 5p, 7 × 2p, 1 × 1p 4 × 5p, 6 × 2p, 3 × 1p 4 × 5p, 5 × 2p, 5 × 1p 4 × 5p, 4 × 2p, 7 × 1p 4 × 5p, 3 × 2p, 9 × 1p 4 × 5p, 2 × 2p, 11 × 1p 4 × 5p, 1 × 2p, 13 × 1p 4 × 5p, 15 × 1p 3 × 5p, 10 × 2p 3 × 5p, 9 × 2p, 2 × 1p 3 × 5p, 8 × 2p, 4 × 1p 3 × 5p, 7 × 2p, 6 × 1p 3 × 5p, 6 × 2p, 8 × 1p 3 × 5p, 5 × 2p, 10 × 1p 3 × 5p, 4 × 2p, 12 × 1p 3 × 5p, 3 × 2p, 14 × 1p 3 × 5p, 2 × 2p, 16 × 1p 3 × 5p, 1 × 2p, 18 × 1p 3 × 5p, 20 × 1p 2 × 5p, 12 × 2p, 1 × 1p 2 × 5p, 11 × 2p, 3 × 1p 2 × 5p, 10 × 2p, 5 × 1p 2 × 5p, 9 × 2p, 7 × 1p 2 × 5p, 8 × 2p, 9 × 1p 2 × 5p, 7 × 2p, 11 × 1p 2 × 5p, 6 × 2p, 13 × 1p 2 × 5p, 5 × 2p, 15 × 1p 2 × 5p, 4 × 2p, 17 × 1p 2 × 5p, 3 × 2p, 19 × 1p 2 × 5p, 2 × 2p, 21 × 1p 2 × 5p, 1 × 2p, 23 × 1p 2 × 5p, 25 × 1p 1 × 5p, 15 × 2p 1 × 5p, 14 × 2p, 2 × 1p 1 × 5p, 13 × 2p, 4 × 1p 1 × 5p, 12 × 2p, 6 × 1p 1 × 5p, 11 × 2p, 8 × 1p 1 × 5p, 10 × 2p, 10 × 1p 1 × 5p, 9 × 2p, 12 × 1p 1 × 5p, 8 × 2p, 14 × 1p 1 × 5p, 7 × 2p, 16 × 1p 1 × 5p, 6 × 2p, 18 × 1p 1 × 5p, 5 × 2p, 20 × 1p 1 × 5p, 4 × 2p, 22 × 1p 1 × 5p, 3 × 2p, 24 × 1p 1 × 5p, 2 × 2p, 26 × 1p 1 × 5p, 1 × 2p, 28 × 1p 1 × 5p, 30 × 1p 17 × 2p, 1 × 1p 16 × 2p, 3 × 1p 15 × 2p, 5 × 1p 14 × 2p, 7 × 1p 13 × 2p, 9 × 1p 12 × 2p, 11 × 1p 11 × 2p, 13 × 1p 10 × 2p, 15 × 1p 9 × 2p, 17 × 1p 8 × 2p, 19 × 1p 7 × 2p, 21 × 1p 6 × 2p, 23 × 1p 5 × 2p, 25 × 1p 4 × 2p, 27 × 1p 3 × 2p, 29 × 1p 2 × 2p, 31 × 1p 1 × 2p, 33 × 1p 35 × 1p
8p3 + 1 = (2p + 1)(4p2 - 2p + 1)
-3+4p-2p=1 -3+2p=1 2p=4 p=2
If you mean: 7p-3p+4-2 = 2p-1+10 => 4p+2 = 2p+9 => 2p = 7 Therefore: p = 7/2 => p = 3.5
5p-1=2p-20 3p=21 p=7
p2 - 2p + 2 can be factored as (p - 1)(p - 1)which can be written as ( p - 1)2.
That depends what the value of p is.
2p + 11p + 5 = 13p + 5 which does not factor. If the expression had been 2p2 + 11p + 5 then this can be factored, 2p2 + 11p + 5 = (2p + 1)(p + 5)
The answer to the question is: (2p+1)(2p+81) for Equation 4p^2+164p+81 P.S ^ is exponent
-2p-18
To find the value of p, simply use addition, subtraction and division to isolate p: 5p -1 = 2p + 20 5p - 2p - 1 = 2p - 2p + 20 3p - 1 + 1 = 20 + 1 3p/3 = 21/3 p = 7 The value of p is 7.
3p+7 = 16+2p 3p-2p = 16-7 p = 9
3p = 2p + 12subtracting 2p from both sidesp = 12 ■