(3x4 + 2x3 - x2 - x - 6)/(x2 + 1)= 3x2 + 2x - 4 + (-3x - 2)/(x2 + 1)= 3x2 + 2x - 4 - (3x + 2)/(x2 + 1)where the quotient is 3x2 + 2x - 4 and the remainder is -(3x + 2).
1
x3 + ax + 3a + 3x2 = x (x2 + a) + 3 (a + x2) = x (x2 + a) + 3 (x2 + a) = (x2 + a)(x + 3) Checking the work: x3 + ax + 3x2 + 3a or x3 + 3x2 + 3a + ax = x2 (x + 3) + a (3 + x) = x2 (x + 3) + a (x + 3) = (x + 3)(x2 + a)
3x3 - x2 - x - 1 = 3x3 - 3x2 + 2x2 - 2x + x - 1 = 3x2(x - 1) + 2x(x - 1) + 1(x - 1) = (3x2 + 2x + 1)(x - 1) So 3x3 - x2 - x - 1 /(x - 1) = (3x2 + 2x + 1)
x3 - 3x2 + x - 3 = (x - 3)(x2 + 1)
(3x4 + 2x3 - x2 - x - 6)/(x2 + 1)= 3x2 + 2x - 4 + (-3x - 2)/(x2 + 1)= 3x2 + 2x - 4 - (3x + 2)/(x2 + 1)where the quotient is 3x2 + 2x - 4 and the remainder is -(3x + 2).
1
x3 + ax + 3a + 3x2 = x (x2 + a) + 3 (a + x2) = x (x2 + a) + 3 (x2 + a) = (x2 + a)(x + 3) Checking the work: x3 + ax + 3x2 + 3a or x3 + 3x2 + 3a + ax = x2 (x + 3) + a (3 + x) = x2 (x + 3) + a (x + 3) = (x + 3)(x2 + a)
x2 + x2 + x2 = (1 + 1 + 1)x2 = 3x2
2x2 + x2 = 3x2
Assuming the 2 is meant to be a square this is the form: x2 - 3x2 = -2x2 + 8x + 5
x2 - (2x)2 = x2 - 4x2 = -3x2 x2 - 2x2 = -x2
3x3 - x2 - x - 1 = 3x3 - 3x2 + 2x2 - 2x + x - 1 = 3x2(x - 1) + 2x(x - 1) + 1(x - 1) = (3x2 + 2x + 1)(x - 1) So 3x3 - x2 - x - 1 /(x - 1) = (3x2 + 2x + 1)
(12x2 + 18) / (3x2 + 6) = (4x2 + 6) / (x2 + 2)
3x2
3x2(x2 - 3)
In general, no.