It is 120.
You seem to be unaware of the fact that you could have obtained the answer much more easily and quickly by using the calculator that comes as part of your computer.
Chat with our AI personalities
There are 32 possible subset from the set {1, 2, 3, 4, 5}, ranging from 0 elements (the empty set) to 5 elements (the whole set): 0 elements: {} 1 element: {1}, {2}, {3}, {4}, {5} 2 elements: {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4,}, {3, 5}, {4, 5} 3 elements: {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5} 4 elements: {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5} 5 elements: {1, 2, 3, 4, 5} The number of sets in each row above is each successive column from row 5 of Pascal's triangle. This can be calculated using the nCr formula where n = 5 and r is the number of elements (r = 0, 1, ..., 5). The total number of subset is given by the sum of row 5 of Pascal's triangle which is given by the formula 2^row, which is this case is 2^5 = 32.
1 1/4 - 3/4 = (1×4+1)/4 - 3/4 = 5/4 - 3/4 = (5-3)/4 = 2/4 = (1×2)/(2×2) = 1/2
If you roll two dice, the following reuslts are possible: 2: 1+1 3: 1+2 , 2+1 4: 1+3, 2+2, 3+1 5: 1+4, 2+3, 3+2, 4+1 6: 1+5, 2+4, 3+3, 4+2, 5+1 7: 1+6, 2+5, 3+4, 4+3, 5+2, 6+1 8: 2+6, 3+5, 4+4, 5+3, 6+2 9: 3+6, 4+5, 5+4, 6+3 10: 4+6, 5+5, 6+4 11: 5+6, 6+5 12: 6+6 As you can see, the greatest number of permutations result in a total of 7. Its probability is 6/36 or 1/6.
+4 +3 +3 -4 -3 -2 0 -1 +3 +1+1 0 +1
5 1/4. LCD=4 3 1/2 + 1 3/4 3 2/4 + 1 3/4 4 5/4 5 1/4