answersLogoWhite

0

5:9 ,i am not sure (;

User Avatar

Wiki User

14y ago

What else can I help you with?

Related Questions

What is the maximum wavelength of balmer series?

The Balmer series is a series of spectral lines in the hydrogen spectrum that corresponds to transitions from energy levels n > 2 to the n=2 level. The longest wavelength in the Balmer series corresponds to the transition from n = ∞ to n = 2, known as the Balmer limit, which is approximately 656.3 nm.


What is the shortest wavelength radiation in balmer series?

The shortest wavelength radiation in the Balmer series is the transition from the n=3 energy level to the n=2 energy level, which corresponds to the Balmer alpha line at 656.3 nm in the visible spectrum of hydrogen.


What is the wavelength of the hydrogen atom in the 2nd line of the Balmer series?

The wavelength of the hydrogen atom in the 2nd line of the Balmer series is approximately 486 nm. This corresponds to the transition of an electron from the third energy level to the second energy level in the hydrogen atom.


What color is the wavelength of light in the balmer series that results from the transition of an electron from n4 to n2?

The n4-n2 transition of hydrogen is in the cyan, with wavelength of 486.1 nm. blue = als


What color is the wavelength of light in the Balmer series that results from the transition of an electron to N equals 2?

There are 4 Balmer lines with wavelengths in the visible region. They are red, aqua and two shades of violet. Other Balmer lines are in the ultraviolet. The red line corresponds to the transition from n = 3 to n = 2, the subsequent ones are from the 4, 5 and 6 levels to n = 2.


Spectral lines of the Lyman and Balmer series do not overlap Verify this statement by calculating the longest wavelength associated with the Lyman series and shortest wavelength associated with the B?

Well, the different series represent different electronic transitions. But there is an important equation, the Rydberg formula which describes all of them.. I think you've learned of it since you mention the n values. This lead to the Bohr model of the hydrogen atom, which explained _why_ you had these levels.Or, almost. See, it turned out that those lines were not actually single lines, but several lines very close together.. And so they had to add more variables to describe how these levels-within-levels fit together.. and the answer to that eventually came from quantum mechanics.


If your eyes could see a slightly wider region of the electromagnetic spectrum you would see a fifth line in the Balmer series emission spectrum Calculate the wavelength lambda associated with the fif?

The Balmer series for hydrogen consists of four spectral lines in the visible region. If there were a fifth line, its wavelength could be calculated using the formula 1/λ = RH(1/4^2 - 1/n^2), where RH is the Rydberg constant and n is the energy level. Plugging in the values, the fifth line wavelength would be smaller than the existing lines in the series.


What is the name of the visible series in the hydrogen spectrum?

I believe it to be the Balmer Series.


What are the colours in the balmer series?

The Balmer series consists of visible spectral lines emitted by hydrogen atoms when electrons transition from higher to lower energy levels. The colors in the Balmer series include red (656.3 nm), blue-green (486.1 nm), and violet (434.0 nm) wavelengths.


If your eyes could see a slightly wider region of the electromagntic spectrum we would see a fifth line in the balmer series emissions spectrum what is the wavelenght associted with the fifth line?

Use the rydberg equation 1/wavelength = 109677[ 1/n one square - 1/n two square ] 109677 is in cm inverse for balmer series n one = 2 and for the fifth line n two = 7 putting them in the equation we get = 397 nm lies in the violet region of light


In hydrogen spectrumwhat is the ratio of first line of Lyman series to the first line of balmer series?

The ratio of the first line of the Lyman series to the first line of the Balmer series in the hydrogen spectrum is 1:5.


What is the ratio of the wave length of last line of balmer and Lehman series?

The ratio of the wavelengths of the last line in the Balmer series to the last line in the Lyman series is 1:5. The Balmer series is associated with transitions to the n=2 energy level, while the Lyman series is associated with transitions to the n=1 energy level in the hydrogen atom.