Note: Assuming you are working with natural, integer, rational(fraction), or real numbers. It doesn't. Infinity is not a number, even though, due to us mathematicians being lazy, we denote something = infinity. But we NEVER write tan 90 = infinity. But rather lim_x->(90degree) tan x = infinity. Meaning as x gets closer to 90 degree (even though degree is a horrible measurement for angle, we will use it), the value of tan x gets large faster and unbounded. tan x? It doesn't exist. Why? Because tan x is defined as (sin x / cos x). When x = 90 degree, cos x = 0, while sin x is positive around x = 90 degree. sin x / cos x := sinx x 1 / cos x, x = 90 degree, we get 1 x 1 / 0. But the definition for inverses does not include 0, meaning 1 / 0 does NOT exist. so, sadly, tan 90degree doesn't exist. The best we can do is see what happens around x = 90degree for tan, as you go into Calculus, you will know the tool is called limits and derivatives. And you might also see the reason it is +infinity, but not -infinity. (tan x approaches -infinity as x approaches 180degree). WHat's more? You will learn a far better measurement for angle that you will stick with in Calculus.
90 degree anticlockwise.
On the unit circle at 90 degrees the 90 degrees in radians is pi/2 and the coordinates for this are: (0,1). The tan function = sin/cos. In the coordinate system x is cos and y is sin. Therefore (0,1) ; cos=0, & sin=1 . Tan=sin/cos so tan of 90 degrees = 1/0. The answer of tan(90) = undefined. There can not be a 0 in the denominator, because you can't devide by something with no quantity. Something with no quantity is 0. Or, on a limits point of view, it would be infinity.
tan(x)*csc(x) = sec(x)
How to calculate 90 degree and 40 degree elbow center >For 90 degree elbow(Dia*38.1) this formula used for only 90 degree elbow. >For 45 degree elbow(45/2of tan*Dia*1.5*25.4) this answer obtained in (mm).
I am not sure what "tan A 90 degree" means. tan(90 degrees) is an expression that is not defined and so cannot be solved. One way to see why that may be so is to think of tan(x) = sin(x)/cos(x). When x = 90 degrees, sin(90) = 1 and cos(90)= 0 that tan(90) = 1/0 and since division by 0 is not defined, tan(90) is not defined.
It is not defined.
Note: Assuming you are working with natural, integer, rational(fraction), or real numbers. It doesn't. Infinity is not a number, even though, due to us mathematicians being lazy, we denote something = infinity. But we NEVER write tan 90 = infinity. But rather lim_x->(90degree) tan x = infinity. Meaning as x gets closer to 90 degree (even though degree is a horrible measurement for angle, we will use it), the value of tan x gets large faster and unbounded. tan x? It doesn't exist. Why? Because tan x is defined as (sin x / cos x). When x = 90 degree, cos x = 0, while sin x is positive around x = 90 degree. sin x / cos x := sinx x 1 / cos x, x = 90 degree, we get 1 x 1 / 0. But the definition for inverses does not include 0, meaning 1 / 0 does NOT exist. so, sadly, tan 90degree doesn't exist. The best we can do is see what happens around x = 90degree for tan, as you go into Calculus, you will know the tool is called limits and derivatives. And you might also see the reason it is +infinity, but not -infinity. (tan x approaches -infinity as x approaches 180degree). WHat's more? You will learn a far better measurement for angle that you will stick with in Calculus.
tan(x) = sin(x) /cos(x).When x = 90 degrees then cos(x) = 0 so tan(x) requires division by zero - which is not defined.
tan0.15
The right angle = 90 degree. If x is an angle and if these 3 angles are equal then x + x + x = 90 3x = 90 x = 90/3 x = 30 degree So, the angle is 30 degree each.
90 degree anticlockwise.
Assuming you mean -90 degrees, not radians: tan (-90) = [sin(-90)]/[cos(-90)] = (-1) / 0 You cannot divide by zero. tan (-90) is undefined/does not exist.
Take the limit of the top and the limit of the bottom. The limit as x approaches cos(2*90°) is cos(180°), which is -1. Now, take the limit as x approaches 90° of tan(3x). You might need a graph of tan(x) to see the limit. The limit as x approaches tan(3*90°) = the limit as x approaches tan(270°). This limit does not exist, so we'll need to take the limit from each side. The limit from the left is ∞, and the limit from the right is -∞. Putting the top and bottom limits back together results in the limit from the left as x approaches 90° of cos(2x)/tan(3x) being -1/∞, and the limit from the right being -1/-∞. -1 divided by a infinitely large number is 0, so the limit from the left is 0. -1 divided by an infinitely large negative number is also zero, so the limit from the right is also 0. Since the limits from the left and right match and are both 0, the limit as x approaches 90° of cos(2x)/tan(3x) is 0.
1 (sec x)(sin x /tan x = (1/cos x)(sin x)/tan x = (sin x/cos x)/tan x) = tan x/tan x = 1
Formula for calculating center to end distance of such elbows is as follows: For 90° Long Radius elbows, center to end dimension given in dimension tables of ASME B16.9 is same as radius of elbow. This is because Tan (90/2) i.e. Tan 45 is 1. Normally custom elbow angles from 45 degree to 90 are cut from 90 degree standard elbow. If that's what you were asking about...
On the unit circle at 90 degrees the 90 degrees in radians is pi/2 and the coordinates for this are: (0,1). The tan function = sin/cos. In the coordinate system x is cos and y is sin. Therefore (0,1) ; cos=0, & sin=1 . Tan=sin/cos so tan of 90 degrees = 1/0. The answer of tan(90) = undefined. There can not be a 0 in the denominator, because you can't devide by something with no quantity. Something with no quantity is 0. Or, on a limits point of view, it would be infinity.