The LCM of 2, 3 and 5 is 30. The LCM of any three relatively prime numbers a, b and c is a*b*c, and here, 2 is a, 3 is b and 5 is c. Since 2, 3 and 5 are relatively prime, the LCM is 2*3*5=30.
question: find the percentage A is of B or, 7 (A) is what percente of 35 (B) (B-A)/B x 100 =C. then subtract C from 100 B-A 35-7=28 /B 28/35=0.8 x 100 =C 0.8 x 100=80 - C 100-80=20. so, 7 is 20 percent of 35
88 b/c 4x22=88 8x11=88 and88x1=88
The property states that for all real numbers a, b, and c, their product is always the same, regardless of their grouping: (a . b) . c = a . (b . c) Example: (6 . 7) . 8 = 6 . (7 . 8) The associative property also applies to complex numbers. Also, as a consequence of the associative property, (a . b) . c and a . (b . c) can both be written as a . b . c without ambiguity.
The LCM of 7 and 49 is 49.
lcm(a,b,c,d) = lcm(lcm(a,b,c),d) = lcm(lcm(a,b),lcm(c,d))
That depends on the values of A, B and C.
If C is co-prime with 6 and with 7, then LCM(6, 7, C) = 42*C If not, the answer depends on the value of C.
The LCM of a^2b and b^2c is a^2b^2c
If a, b & c are prime numbers then their LCM is equal to their product i.e. a x b x c.Here, 5, 7 and 13 are prime numbers.Therefore, LCM(7,5,13) = 7 x 5 x 13 = 455.
To calculate the least common multiple (lcm) of decimals (integers) and fractions you first need to calculate the greatest common divisor (gcd) of two integers: int gcd (int a, int b) { int c; while (a != 0) { c = a; a = b % a; b = c; } return b; } With this function in place, we can calculate the lcm of two integers: int lcm (int a, int b) { return a / gcd (a, b) * b; } And with this function in place we can calculate the lcm of two fractions (a/b and c/d): int lcm_fraction (int a, int b, int c, int d) { return lcm (a, c) / gcd (b, d); }
The LCM of 2, 3 and 5 is 30. The LCM of any three relatively prime numbers a, b and c is a*b*c, and here, 2 is a, 3 is b and 5 is c. Since 2, 3 and 5 are relatively prime, the LCM is 2*3*5=30.
For this you will need a couple of helper algorithms. The first is the GCD (greatest common divisor) which is expressed as follows:procedure GCD (a, b) isinput: natural numbers a and bwhile ab doif a>blet a be a-belselet b be b-aend ifend whilereturn aThe second algorithm is the LCM (least common multiple) of two numbers:procedure LCM (a, b) isinput: natural numbers a and b return (a*b) / GCD (a, b)Now that you can calculate the GCD and LCM of any two natural numbers, you can calculate the LCM of any three natural numbers as follows:procedure LCM3 (a, b, c) isinput: natural numbers a, b and c return LCM (LCM (a, b), c)Note that the LCM of three numbers first calculates the LCM of two of those numbers (a and b) and then calculates the LCM of that result along with the third number (c). That is, if the three numbers were 8, 9 and 21, the LCM of 8 and 9 is 72 and the LCM of 72 and 21 is 504. Thus the LCM of 8, 9 and 21 is 504.
#include<stdio.h> main() { int a,b,i,lcm,gcf; printf("\n Enter two numbers"); scanf("%d%d",&a,&b); for(i=0;i<=a;i++) { if((b%i==0)&&(a%i==0)) { gcf=i; } } lcm=a*b/gcf; printf("\n GCF is %d and LCM is %d",gcf,lcm); }
1008
C. 12b3
You haven't provided any choices for the "which of the following" part of your question. Such questions are best avoided here. However, assuming a, b and c are all natural numbers, all of the following are true for a<b AND b+c=10: a=1, b=2, c=8 a=1, b=3, c=7 a=1, b=4, c=6 a=1, b=5, c=5 a=1, b=6, c=4 a=1, b=7, c=3 a=1, b=8, c=2 a=1, b=9, c=1 a=2, b=3, c=7 a=2, b=4, c=6 a=2, b=5, c=5 a=2, b=6, c=4 a=2, b=7, c=3 a=2, b=8, c=2 a=2, b=9, c=1 a=3, b=4, c=6 a=3, b=5, c=5 a=3, b=6, c=4 a=3, b=7, c=3 a=3, b=8, c=2 a=3, b=9, c=1 a=4, b=5, c=5 a=4, b=6, c=4 a=4, b=7, c=3 a=4, b=8, c=2 a=4, b=9, c=1 a=5, b=6, c=4 a=5, b=7, c=3 a=5, b=8, c=2 a=5, b=9, c=1 a=6, b=7, c=3 a=6, b=8, c=2 a=6, b=9, c=1 a=7, b=8, c=2 a=7, b=9, c=1 a=8, b=9, c=1