answersLogoWhite

0

not (b or c) = (not b) and (not c)

User Avatar

Wiki User

15y ago

What else can I help you with?

Continue Learning about Other Math

Prove A union B minus A intersection B equals A minus B union B minus A?

complement of c


Is it true that if a union c equals b union c then a equals b?

No- this is not true in general. Counterexample: Let a = {1,2}, b = {1} and c ={2}. a union c = [1,2} and b union c = {1,2} but a does not equal b. The statement be made true by putting additional restrictions on the sets.


Prove A union C minus B minus C equals A minus B union C?

This is really a version of deMorgans that states the complement of the intersection of any number of sets equals the union of their complements.We prove it in general and this is a specific case.Take x contained in the complement of the intersection of all sets Aj that is to say x is not in the intersection of all Aj . Now there must be at least one set that does not contain x since if all sets contain x then x would be in their intersection as well. Call this set A. Since x is not in A, x must be in the complement of A. But then x is also in the union of all complements of Aj , because A is one of those sets. This proves that the right hand set is contained in the left one.We now prove it the other way, that is to say, the left hand side is contained in the right. Remember that if A and B are sets and A is contained in B and B is contained in A we can say that as sets A=B.Consider x contained in the union of all complements of Aj . That means there is at least one complement that contains x, or in other words, at least one of the Aj does not contain x. But then x is not in the intersection of all Aj , and hence it must be in the complement of that intersection. That proves the other inequality, so both sets must be equal.


What is a complement of a subset?

The complement of a subset B within a set A consists of all elements of A which are not in B.


How do you find the venn diagram for union of three sets?

Draw your Venn Diagram as three overlapping circles. Each circle is a set. The union of the sets is what's contained within all 3 circles, making sure not to count the overlapping portion twice. An easier problem is when you have 2 sets, lets say A and B. In a Venn Diagram that looks like 2 overlapping circles. A union B = A + B - (A intersect B) A intersect B is the region that both circles have in common. You subtract that because it has already been included when you added circle A, so you don't want to add that Again with circle B, thus you subtract after adding B. With three sets, A, B, C A union B union C = A + B - (A intersect B) + C - (A intersect C) - (B intersect C) + (A intersect B intersect C) You have to add the middle region (A intersect B intersect C) back because when you subtract A intersect C and B intersect C you are actually subtracting the very middle region Twice, and that's not accurate. This would be easier to explain if we could actually draw circles.

Related Questions

Prove A union B minus A intersection B equals A minus B union B minus A?

complement of c


How do you solve A intersecting B union C?

The answer depends on whether you mean A intersecting (B union C) or (A intersecting B) union C.


Is it true that if a union c equals b union c then a equals b?

No- this is not true in general. Counterexample: Let a = {1,2}, b = {1} and c ={2}. a union c = [1,2} and b union c = {1,2} but a does not equal b. The statement be made true by putting additional restrictions on the sets.


Prove if a union c equals b union c and a intersect c equals b intersect c then a equals b?

suppose x is in B. there are two cases you have to consider. 1. x is in A. 2. x is not in A Case 1: x is in A. x is also in B. then x is in A intersection B. Since A intersection B = A intersection C, then this means x is in A intersection C. this implies that x is in C. Case 2: x is not in A. then x is in B. We know that x is in A union B. Since A union B = A union C, this means that x is in A or x is in C. since x is not in A, it follows that x is in C. We have shown that B is a subset of C. To show that C is subset of B, we do the same as above.


What is the negative of the union?

The negative of the union of two sets, often referred to as the complement of the union, includes all elements that are not in either of the sets. Mathematically, if A and B are two sets, the complement of their union is represented as (A ∪ B)'. This set consists of all elements in the universal set that are not found in A or B. In simpler terms, it captures everything outside of the combined elements of both sets.


What is the venn diagram of a union b union c?

Venn diagram is represented with the help of circles. Union of a, b and c is shown by the three fully shaded somewhat overlapped circles. Result will be the elements that is in all three sets(a,b,c).


Is there an angle whose supplement is equal to its complement?

yes. a + b = 90 degrees: complements: C + D = 180: supplements: a = 5, b = 85, c = 95, d = 85. b & c are supplements. b = d


Prove A union C minus B minus C equals A minus B union C?

This is really a version of deMorgans that states the complement of the intersection of any number of sets equals the union of their complements.We prove it in general and this is a specific case.Take x contained in the complement of the intersection of all sets Aj that is to say x is not in the intersection of all Aj . Now there must be at least one set that does not contain x since if all sets contain x then x would be in their intersection as well. Call this set A. Since x is not in A, x must be in the complement of A. But then x is also in the union of all complements of Aj , because A is one of those sets. This proves that the right hand set is contained in the left one.We now prove it the other way, that is to say, the left hand side is contained in the right. Remember that if A and B are sets and A is contained in B and B is contained in A we can say that as sets A=B.Consider x contained in the union of all complements of Aj . That means there is at least one complement that contains x, or in other words, at least one of the Aj does not contain x. But then x is not in the intersection of all Aj , and hence it must be in the complement of that intersection. That proves the other inequality, so both sets must be equal.


How do you find A complement intersection B complement?

(A' ∩ B') = (A È B)'


What are Demorgans Law Also explain the use of Demorgans law with example?

The Demorgans Law includes the union, intersection, and complement in mathematics. Examples are A intersection B and B union A. Those are the basic examples.


What is the measure of an angle that has a measure 8 less than the measure of its complement a 82 b 41 c 49 d 98?

b


What does b complement mean in math?

In mathematics, specifically in set theory, the term "B complement" refers to the elements that are not in set B but are in a universal set U. It is denoted as ( B' ) or ( U - B ). This concept helps to define the difference between the universal set and a given subset, allowing for operations like union and intersection to be performed more easily. Essentially, B complement includes all the elements of the universal set that do not belong to set B.