Study guides

☆☆

Q: What is the difference between an arithmetic series and an arithmetic sequence?

Write your answer...

Submit

Still have questions?

Continue Learning about Other Math

An arithmetic series is a fairly similar to an arithmetic sequence except for the fact that in a series you are adding the numbers in between, not putting commas. Example: Sequence 1,3,5,7,.........n Series 1+3+5+7+..........+n Hope this helped(:

Yes, with a difference of zero between terms. It is also a geometric series, with a ratio of 1 in each case.

The question needs to be a bit more specific than that!

It is an arithmetic sequence. To differentiate arithmetic from geometric sequences, take any three numbers within the sequence. If the middle number is the average of the two on either side then it is an arithmetic sequence. If the middle number squared is the product of the two on either side then it is a geometric sequence. The sequence 0, 1, 1, 2, 3, 5, 8 and so on is the Fibonacci series, which is an arithmetic sequence, where the next number in the series is the sum of the previous two numbers. Thus F(n) = F(n-1) + F(n-2). Note that the Fibonacci sequence always begins with the two numbers 0 and 1, never 1 and 1.

Arithmetic, common difference 5.5

Related questions

An arithmetic series is a fairly similar to an arithmetic sequence except for the fact that in a series you are adding the numbers in between, not putting commas. Example: Sequence 1,3,5,7,.........n Series 1+3+5+7+..........+n Hope this helped(:

The difference between each number in an arithmetic series

Yes, with a difference of zero between terms. It is also a geometric series, with a ratio of 1 in each case.

An arithmetic series is the sequence of partial sums of an arithmetic sequence. That is, if A = {a, a+d, a+2d, ..., a+(n-1)d, ... } then the terms of the arithmetic series, S(n), are the sums of the first n terms and S(n) = n/2*[2a + (n-1)d]. Arithmetic series can never converge.A geometric series is the sequence of partial sums of a geometric sequence. That is, if G = {a, ar, ar^2, ..., ar^(n-1), ... } then the terms of the geometric series, T(n), are the sums of the first n terms and T(n) = a*(1 - r^n)/(1 - r). If |r| < 1 then T(n) tends to 1/(1 - r) as n tends to infinity.

Succession of numbers of which one number is designated as the first, other as the second, another as the third and so on gives rise to what is called a sequence. Sequences have wide applications. In this lesson we shall discuss particular types of sequences called arithmetic sequence, geometric sequence and also find arithmetic mean (A.M), geometric mean (G.M) between two given numbers. We will also establish the relation between A.M and G.M

The question needs to be a bit more specific than that!

It is an arithmetic sequence. To differentiate arithmetic from geometric sequences, take any three numbers within the sequence. If the middle number is the average of the two on either side then it is an arithmetic sequence. If the middle number squared is the product of the two on either side then it is a geometric sequence. The sequence 0, 1, 1, 2, 3, 5, 8 and so on is the Fibonacci series, which is an arithmetic sequence, where the next number in the series is the sum of the previous two numbers. Thus F(n) = F(n-1) + F(n-2). Note that the Fibonacci sequence always begins with the two numbers 0 and 1, never 1 and 1.

Arithmetic, common difference 5.5

This sequence is an arithmetic series that makes use of another series. This sequence advances by adding the series 4, 11, 21, 34, and 50 to the initial terms. This secondary series has a difference of 7, 10, 13 and 16 which advance by terms of 3. So the next three numbers in the primary sequence are 190, 281 and 397.

An arithmetic series is the sum of the terms in an arithmetic progression.

AP - Arithmetic ProgressionGP - Geometric ProgressionAP:An AP series is an arithmetic progression, a sequence of numbers such that the difference between the consecutive terms is constant. For instance, the sequence 3, 5, 7, 9, 11, 13, … is an arithmetic progression with common difference 2. If the initial term of an arithmetic progression is and the common difference of successive members is d, then the nth term of the sequence is given by:and in generalA finite portion of an arithmetic progression is called a finite arithmetic progression and sometimes just called an arithmetic progression.The behavior of the arithmetic progression depends on the common difference d. If the common difference is:Positive, the members (terms) will grow towards positive infinity.Negative, the members (terms) will grow towards negative infinity.The sum of the members of a finite arithmetic progression is called an arithmetic series.Expressing the arithmetic series in two different ways:Adding both sides of the two equations, all terms involving d cancel:Dividing both sides by 2 produces a common form of the equation:An alternate form results from re-inserting the substitution: :In 499 AD Aryabhata, a prominent mathematician-astronomer from the classical age of Indian mathematics and Indian astronomy, gave this method in the Aryabhatiya (section 2.18) .[1]So, for example, the sum of the terms of the arithmetic progression given by an = 3 + (n-1)(5) up to the 50th term isGP:A GP is a geometric progression, with a constant ratio between successive terms. For example, the series is geometric, because each successive term can be obtained by multiplying the previous term by 1 / 2.Geometric series are one of the simplest examples of infinite series with finite sums, although not all of them have this property. Historically, geometric series played an important role in the early development of calculus, and they continue to be central in the study of convergence of series. Geometric series are used throughout mathematics, and they have important applications in physics, engineering, biology, economics, computer science, queuing theory, and finance.

who discovered in arithmetic series

People also asked