The question needs to be a bit more specific than that!
An arithmetic sequence is a list of numbers which follow a rule. A series is the sum of a sequence of numbers.
An arithmetic series is a fairly similar to an arithmetic sequence except for the fact that in a series you are adding the numbers in between, not putting commas. Example: Sequence 1,3,5,7,.........n Series 1+3+5+7+..........+n Hope this helped(:
It is an arithmetic sequence. To differentiate arithmetic from geometric sequences, take any three numbers within the sequence. If the middle number is the average of the two on either side then it is an arithmetic sequence. If the middle number squared is the product of the two on either side then it is a geometric sequence. The sequence 0, 1, 1, 2, 3, 5, 8 and so on is the Fibonacci series, which is an arithmetic sequence, where the next number in the series is the sum of the previous two numbers. Thus F(n) = F(n-1) + F(n-2). Note that the Fibonacci sequence always begins with the two numbers 0 and 1, never 1 and 1.
Any pair of numbers will always form an arithmetic sequence.
The 90th term of the arithmetic sequence is 461
An arithmetic sequence is a list of numbers which follow a rule. A series is the sum of a sequence of numbers.
An arithmetic series is a fairly similar to an arithmetic sequence except for the fact that in a series you are adding the numbers in between, not putting commas. Example: Sequence 1,3,5,7,.........n Series 1+3+5+7+..........+n Hope this helped(:
The term "0.21525" itself does not indicate whether it is geometric or arithmetic, as it is simply a numerical value. To determine if a sequence or series is geometric or arithmetic, we need to examine the relationship between its terms. An arithmetic sequence has a constant difference between consecutive terms, while a geometric sequence has a constant ratio. If you provide a series of terms, I can help identify its nature.
origin of arithmetic sequence
A non-example of an arithmetic sequence is the series of numbers 2, 4, 8, 16, which is a geometric sequence. In this sequence, each term is multiplied by 2 to get to the next term, rather than adding a fixed number. Therefore, it does not have a constant difference between consecutive terms, which is a defining characteristic of an arithmetic sequence.
An arithmetic series is the sequence of partial sums of an arithmetic sequence. That is, if A = {a, a+d, a+2d, ..., a+(n-1)d, ... } then the terms of the arithmetic series, S(n), are the sums of the first n terms and S(n) = n/2*[2a + (n-1)d]. Arithmetic series can never converge.A geometric series is the sequence of partial sums of a geometric sequence. That is, if G = {a, ar, ar^2, ..., ar^(n-1), ... } then the terms of the geometric series, T(n), are the sums of the first n terms and T(n) = a*(1 - r^n)/(1 - r). If |r| < 1 then T(n) tends to 1/(1 - r) as n tends to infinity.
It is an arithmetic sequence for which the index goes on and on (and on).
It is an arithmetic sequence. To differentiate arithmetic from geometric sequences, take any three numbers within the sequence. If the middle number is the average of the two on either side then it is an arithmetic sequence. If the middle number squared is the product of the two on either side then it is a geometric sequence. The sequence 0, 1, 1, 2, 3, 5, 8 and so on is the Fibonacci series, which is an arithmetic sequence, where the next number in the series is the sum of the previous two numbers. Thus F(n) = F(n-1) + F(n-2). Note that the Fibonacci sequence always begins with the two numbers 0 and 1, never 1 and 1.
That's an arithmetic sequence.
It is the start of an arithmetic sequence.
Arithmetic
Any pair of numbers will always form an arithmetic sequence.