answersLogoWhite

0


Best Answer

Generally, when the median is greater than the mean it is because the distribution is skewed to the left. This results in outliers or values further below the median than above the median which results in a lower mean value than median value. When a distribution is skewed left, it is generally not very symmetrical or normally distributed.

User Avatar

Wiki User

13y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is the nature of symmetry if median is greater than the mean?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

When skewed right is the mean greater than median?

When a distribution is skewed to the right, the mean is greater than median.


Can the mean be greater than the median?

Yes.


What are some numbers that the mean is bigger than the median and the median is greater than the mode?

7,6,4,92,57,32


How does the median affect the graph of a normal distribution?

A normal distribution is symmetrical; the mean, median and mode are all the same, on the line of symmetry (middle) of the graph.


Can the median ever be higher than the mean?

Yes, the median can be greater than the mean. It just depends on the values of the data. A simple series of 1,5,6 has 5 as the median, with a mean of 4.


How do you calculate mean and Median smaller then Standard deviation?

In the same way that you calculate mean and median that are greater than the standard deviation!


What if the mean is greater than the median?

In the majority of Empirical cases the mean will not be equal to the median, so the event is hardly unusual. If the mean is greater, then the distribution is poitivelt skewed (skewed to the right).


If there are outliers then the mean will be greater than the median its true or false?

true


In a normally distributed data set which is greater mean median or mode?

In a normal distribution the mean, median and mode are all the same value.


Can the median be greater than the mean in a set of numbers?

No because the mean is the highest numeral and the median is the middle numeral of the set of numbers so it is tecnictly impossible, but if you are using decimals, the median could get pretty close to the mean, but never higher.


What is the shape of a frequency distribution with an arithmetic mean of 800 pounds median of 758 pounds and a mode of 750 pounds?

As the mean is greater than the median it will be positively skewed (skewed to the right), and if the median is larger than the mean it will be negatively skewed (skewed to the left)


What is the mean is greater than the median and the median is greater than the mode?

I am guessing you are asking for an example of a set of numbers with these properties. Let's start with 5 numbers, so the median will be the middle number; say 1, 2, 3, 4, 5. The median is 3, but so is the mean. Now let's replace the 5 with 10. The median is still 3, but the mean is 4. To make the mode less than 3, let us change the 2 into a 1. Now the median is still 3, the mode is 1, and the mean is 3.8. So 1, 1, 3, 4, 10 will work.