The numbers need to be grouped to form the squares of integers starting from 12.
1 (12) 4 (22) 9 (32) 16 (42) 25 (52) 36 (62) 49 (72) 64 (82) 81 (92).......and it continues 100 (102) 121 (112).......and so on.
1 -1, 2 -2, 3 -3, 4 -4, and so on. It is simply a positive number followed by its negative number.
[(-4) + (-3)]*[(-2 - (-1)] = (-4 -3)*(-2 + 1) = -7*-1 = +7[(-4) + (-3)]*[(-2 - (-1)] = (-4 -3)*(-2 + 1) = -7*-1 = +7[(-4) + (-3)]*[(-2 - (-1)] = (-4 -3)*(-2 + 1) = -7*-1 = +7[(-4) + (-3)]*[(-2 - (-1)] = (-4 -3)*(-2 + 1) = -7*-1 = +7
one and a half 1/2 = 2/4 half of 2/4 = 1/4 2/4 + 1/4 = 3/4 ------------------------------------------- 3/4 ÷ 1/2 = 3/4 × 2/1 = (3×2)/(4×1) = 6/4 = 3/2 = 1½
hdbefaioearhgiuqgiiiiiiiiiiiiiiiiiiiiiiiiiiiiifvrnnnnbaqhfiuqehifhfuohyq38hfrusbvueqhfiuahfuihfrieuhfdiusuhqiufhifuhiahiehfihfurhuioahefiwheiwhdiuhiheiwhfeghuhfijeiund
Everytime you move to the next number you add 1, then 2, then 3, etc.1+1=22+2=44+3=77+4=1111+5=1616+6=2222+7=2929+8=37
1 -1, 2 -2, 3 -3, 4 -4, and so on. It is simply a positive number followed by its negative number.
The numbers are what you get when you make a sum of reciprocal exponents. N(1) = 1^1 = 1 N(2) = 1^2 + 2^1 = 1 + 2 = 3 N(3) = 1^3 + 2^2 + 3^1 = 1 + 4 + 3 = 8 N(4) = 1^4 + 2^3 + 3^2 + 4^1 = 1 + 8 + 9 + 4 = 22 The next number in the pattern would be 2780.
It is 2, assuming the pattern is repeated as given. 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1... If the intended pattern is to continue to subtract 1 from the last number, then the 5479th digit of the pattern will be -5470.
-11 Pattern: Subtract 1, subtract 2, subtract 3 and so on.
i0 = 4; in = in-1 - 3
t(n) = 3(n-1) + 1, for n = 1, 2, 3, etc
The finger pattern for playing the F major scale on the piano is: 1-2-3, 1-2-3-4, 1-2-3.
cube numbers next is 64 1 = 1 x 1 x 1 = 1³ 8 = 2 x 2 x 2 = 2³ 27 = 3 x 3 x 3 = 3³ then 64 = 4 x 4 x 4 = 4³
1 1 1 2 1 3 1 4 2 1 2 2 2 3 2 4 3 1 3 2 3 3 3 4 4 1 4 2 4 3 4 4
The pattern rule for the given sequence is: starting with 0, add 3, then subtract 1, then add 2, then add 2, then add 3, then add 1, and the pattern repeats. This can be written as: +3, -1, +2, +2, +3, +1. This rule can be used to predict the next numbers in the sequence.
[(-4) + (-3)]*[(-2 - (-1)] = (-4 -3)*(-2 + 1) = -7*-1 = +7[(-4) + (-3)]*[(-2 - (-1)] = (-4 -3)*(-2 + 1) = -7*-1 = +7[(-4) + (-3)]*[(-2 - (-1)] = (-4 -3)*(-2 + 1) = -7*-1 = +7[(-4) + (-3)]*[(-2 - (-1)] = (-4 -3)*(-2 + 1) = -7*-1 = +7
There are 64 subsets, and they are:{}, {A}, {1}, {2}, {3}, {4}, {5}, {A,1}, {A,2}, {A,3}, {A,4}, {A,5}, {1,2}, {1,3}, {1,4}, {1,5}, {2,3}, {2,4}, {2,5}, {3,4}, {3, 5}, {4,5}, {A, 1, 2}, {A, 1, 3}, {A, 1, 4}, {A, 1, 5}, {A, 2, 3}, {A, 2, 4}, {A, 2, 5}, {A, 3, 4}, {A, 3, 5}, {A, 4, 5}, {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}, {A, 1, 2, 3}, {A, 1, 2, 4}, {A, 1, 2, 5}, {A, 1, 3, 4}, {A, 1, 3, 5}, {A, 1, 4, 5}, {A, 2, 3, 4}, {A, 2, 3, 5}, {A, 2, 4, 5}, {A, 3, 4, 5}, {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}, {A, 1, 2, 3, 4}, {A, 1, 2, 3, 5}, {A, 1, 2, 4, 5}, {A, 1, 3, 4, 5}, {A, 2, 3, 4, 5}, {1, 2, 3, 4, 5} {A, 1, 2, 3,,4, 5} .