The powerset for the set {0, 1} is the set containing:
Φ, {0}, {1}, {0, 1}.
Chat with our AI personalities
0 . . . . . 0 0 0 0 1 . . . . . 0 0 0 1 2 . . . . . 0 0 1 0 3 . . . . . 0 0 1 1 4 . . . . . 0 1 0 0 5 . . . . . 0 1 0 1 6 . . . . . 0 1 1 0 7 . . . . . 0 1 1 1 8 . . . . . 1 0 0 0 9 . . . . . 1 0 0 1 10 . . . . 1 0 1 0
| x | y | x' | y' | x⊕y | x'⊕y' | ---------------------------------- | 0 | 0 | 1 | 1 | 0 | 0 | | 0 | 1 | 1 | 0 | 1 | 1 | | 1 | 0 | 0 | 1 | 1 | 1 | | 1 | 1 | 0 | 0 | 0 | 0 |
Here they are for 1 to 16, at no extra cost:Dec . . . Bin1 . . . . . 12 . . . . . 1 03 . . . . . 1 14 . . . . . 1 0 05 . . . . . 1 0 16 . . . . . 1 1 07 . . . . . 1 1 18 . . . . . 1 0 0 09 . . . . . 1 0 0 110 . . . . 1 0 1 011 . . . . 1 0 1 112 . . . . 1 1 0 013 . . . . 1 1 0 114 . . . . 1 1 1 015 . . . . 1 1 1 116 . . . . 1 0 0 0 0
AnswerAnswer: ( 0! + 0! + 0! + 0! + 0! ) ! = 120 Explanation: Here we have used operator called " factorial ". As you know that 0! = 1 so, = ( 0! + 0! + 0! + 0! + 0! ) ! = ( 1 + 1 + 1 + 1 + 1 ) ! = (5 )! = 120 : ( 0! + 0! + 0! + 0! + 0! ) ! = 120 Explanation: Here we have used operator called " factorial ". As you know that 0! = 1 so, = ( 0! + 0! + 0! + 0! + 0! ) ! = ( 1 + 1 + 1 + 1 + 1 ) ! = (5 )! = 120
0-(-1) is the same as 0+1, so 0-(-1)=1