The sum of all multiples of 3 below 500 is the sum of 3 + 6 + ... + 498 = 41583
The sum of all multiples of 5 below 500 is the sum of 5 + 10 + ... + 495 = 24750
Depending upon the interpretation of "of 3 and 5", the answer is one of:
I have emphasised the word below with regard to 500 since 500 is a multiple of 5, but 500 is not below (less than) itself, that is the multiples are of the numbers 1, 2, 3, ..., 499. If the question was intended to mean less than or equal to 500, add an extra 500 to the multiples of 5 above, making the sum of the multiples of 5 be 25250 and the final sums (1) 8415, (2) 66833, (3) 58418.
The sum of the first 500 odd numbers is 250,000.
Well, you could add them one by one, or write a small computer program to do that, but here is a shortcut:Use the formula for an arithmetic series, to find the sum of all the multiples of 3 (3, 6, ... 999).Similarly for all the multiples of 5 (5, 10, ... 995).Add it all up.Multiples of 15 will be counted twice in his calculation, so you'll have to calculate the sum of all the multiples of 15, and subtract it from the above.Well, you could add them one by one, or write a small computer program to do that, but here is a shortcut:Use the formula for an arithmetic series, to find the sum of all the multiples of 3 (3, 6, ... 999).Similarly for all the multiples of 5 (5, 10, ... 995).Add it all up.Multiples of 15 will be counted twice in his calculation, so you'll have to calculate the sum of all the multiples of 15, and subtract it from the above.Well, you could add them one by one, or write a small computer program to do that, but here is a shortcut:Use the formula for an arithmetic series, to find the sum of all the multiples of 3 (3, 6, ... 999).Similarly for all the multiples of 5 (5, 10, ... 995).Add it all up.Multiples of 15 will be counted twice in his calculation, so you'll have to calculate the sum of all the multiples of 15, and subtract it from the above.Well, you could add them one by one, or write a small computer program to do that, but here is a shortcut:Use the formula for an arithmetic series, to find the sum of all the multiples of 3 (3, 6, ... 999).Similarly for all the multiples of 5 (5, 10, ... 995).Add it all up.Multiples of 15 will be counted twice in his calculation, so you'll have to calculate the sum of all the multiples of 15, and subtract it from the above.
-3
56, 63, 70 and 77
this isn't a place to do your math homework.
The multiple of 3 nearest to and below 1000 is 999. 999/3 = 333 The sum of all the multiples is 3 x 333 x 334/2 = 166833 The multiple of 5 nearest to and below 1000 is 995. 995/5 = 199 The sum of all the multiples is 5 x 199 x 200/2 = 99500
There are infinitely many multiples of 9 and it is not possible to add them all.
Oh, what a happy little question! To find the sum of the first 500 multiples of 3, we can use the formula for the sum of an arithmetic series: (n/2) * (first term + last term). In this case, the first term is 3 and the last term is 3 * 500. Plugging these values in, we get (500/2) * (3 + 1500) = 250 * 1503 = 375,750.
They are infinitely many and they form an increasing sequence the sum is infinite.
The sum of the first 500 odd numbers is 250,000.
That would be equal to the sum of all positive integers less than 1000 minus the sum of all positive multiples of three that are less than 1000. That would be equal to: (1000 + 1) * (1000 / 2) - 3 * (333 + 1) * (333 / 2) = 1001 * 500 - 1000 * 166.5 = 500500 - 166500 = 334000
Well, you could add them one by one, or write a small computer program to do that, but here is a shortcut:Use the formula for an arithmetic series, to find the sum of all the multiples of 3 (3, 6, ... 999).Similarly for all the multiples of 5 (5, 10, ... 995).Add it all up.Multiples of 15 will be counted twice in his calculation, so you'll have to calculate the sum of all the multiples of 15, and subtract it from the above.Well, you could add them one by one, or write a small computer program to do that, but here is a shortcut:Use the formula for an arithmetic series, to find the sum of all the multiples of 3 (3, 6, ... 999).Similarly for all the multiples of 5 (5, 10, ... 995).Add it all up.Multiples of 15 will be counted twice in his calculation, so you'll have to calculate the sum of all the multiples of 15, and subtract it from the above.Well, you could add them one by one, or write a small computer program to do that, but here is a shortcut:Use the formula for an arithmetic series, to find the sum of all the multiples of 3 (3, 6, ... 999).Similarly for all the multiples of 5 (5, 10, ... 995).Add it all up.Multiples of 15 will be counted twice in his calculation, so you'll have to calculate the sum of all the multiples of 15, and subtract it from the above.Well, you could add them one by one, or write a small computer program to do that, but here is a shortcut:Use the formula for an arithmetic series, to find the sum of all the multiples of 3 (3, 6, ... 999).Similarly for all the multiples of 5 (5, 10, ... 995).Add it all up.Multiples of 15 will be counted twice in his calculation, so you'll have to calculate the sum of all the multiples of 15, and subtract it from the above.
No. The sum of all integers between 1 and 500 is 124,749.
-3
The sum of three consecutive multiples of 6 is 666, the multiples are 216, 222 and 228.
All multiples of 12 are also multiples of 6 and they all can be written as the sum of nine numbers.
The sum of the first 10 multiples of 3 is 165.