answersLogoWhite

0

0.0714

User Avatar

Vivien Lind

Lvl 10
4y ago

What else can I help you with?

Continue Learning about Other Math

What is the sum of all the positive proper fractions with denominators less than or equal to 100?

Consider a denominator of r; It has proper fractions: 1/r, 2/r, ...., (r-1)/r Their sum is: (1 + 2 + ... + (r-1))/r The numerator of this sum is 1 + 2 + ... + (r-1) Which is an Arithmetic Progression (AP) with r-1 terms, and sum: sum = number_of_term(first + last)/2 = (r-1)(1 + r-1)/2 = (r-1)r/2 So the sum of the proper fractions with a denominator or r is: sum{r} = ((r-1)r/2)/r = ((r-1)r/2r = (r-1)/2 Now consider the sum of the proper fractions with a denominator r+1: sum{r+1} = (((r+1)-1)/2 = ((r-1)+1)/2 = (r-1)/2 + 1/2 = sum{r) + 1/2 So the sums of the proper fractions of the denominators forms an AP with a common difference of 1/2 The first denominator possible is r = 2 with sum (2-1)/2 = ½; The last denominator required is r = 100 with sum (100-1)/2 = 99/2 = 49½; And there are 100 - 2 + 1 = 99 terms to sum So the required sum is: sum = ½ + 1 + 1½ + ... + 49½ = 99(½ + 49½)/2 = 99 × 50/2 = 2475


What is the sum of the infinite geometric series?

The sum of the series a + ar + ar2 + ... is a/(1 - r) for |r| < 1


What is the formula to find the sum of a geometric sequence?

The formula to find the sum of a geometric sequence is adding a + ar + ar2 + ar3 + ar4. The sum, to n terms, is given byS(n) = a*(1 - r^n)/(1 - r) or, equivalently, a*(r^n - 1)/(r - 1)


What is 14 divided by 5 equals?

2.8


What is the sum of the first 15 terms of an arithmetic?

For an Arithmetic Progression, Sum = 15[a + 7d].{a = first term and d = common difference} For a Geometric Progression, Sum = a[1-r^15]/(r-1).{r = common ratio }.

Related Questions

What is the sum of all the positive proper fractions with denominators less than or equal to 100?

Consider a denominator of r; It has proper fractions: 1/r, 2/r, ...., (r-1)/r Their sum is: (1 + 2 + ... + (r-1))/r The numerator of this sum is 1 + 2 + ... + (r-1) Which is an Arithmetic Progression (AP) with r-1 terms, and sum: sum = number_of_term(first + last)/2 = (r-1)(1 + r-1)/2 = (r-1)r/2 So the sum of the proper fractions with a denominator or r is: sum{r} = ((r-1)r/2)/r = ((r-1)r/2r = (r-1)/2 Now consider the sum of the proper fractions with a denominator r+1: sum{r+1} = (((r+1)-1)/2 = ((r-1)+1)/2 = (r-1)/2 + 1/2 = sum{r) + 1/2 So the sums of the proper fractions of the denominators forms an AP with a common difference of 1/2 The first denominator possible is r = 2 with sum (2-1)/2 = ½; The last denominator required is r = 100 with sum (100-1)/2 = 99/2 = 49½; And there are 100 - 2 + 1 = 99 terms to sum So the required sum is: sum = ½ + 1 + 1½ + ... + 49½ = 99(½ + 49½)/2 = 99 × 50/2 = 2475


What is the sum of the infinite geometric series?

The sum of the series a + ar + ar2 + ... is a/(1 - r) for |r| < 1


What is the formula for the sum of the series r(1/n2-1/n2)?

The formula for the sum of the series r(1/n2-1/n2) is r(1-1/n2).


What is r divided by r?

1


What is 155 divided by 11?

14.0909


What is the formula to find the sum of a geometric sequence?

The formula to find the sum of a geometric sequence is adding a + ar + ar2 + ar3 + ar4. The sum, to n terms, is given byS(n) = a*(1 - r^n)/(1 - r) or, equivalently, a*(r^n - 1)/(r - 1)


What is 1353 divided by 14?

96.6429


What is 14 divided by 5 equals?

2.8


What is the sum of the first 15 terms of an arithmetic?

For an Arithmetic Progression, Sum = 15[a + 7d].{a = first term and d = common difference} For a Geometric Progression, Sum = a[1-r^15]/(r-1).{r = common ratio }.


What is the answer to this math problem r divided by 4 equals 1 divided by 3?

R/4 = 1/3 r/4*4 = 1/3 *4 r=4/3


Does 723 divided by 14 equal 51 R 9?

True


What is 455 divided by 21 with remainder?

21.6667