1
270 rule represent a 270 rotation to the left which is very easy
It is (-6, -1).
It is multiplication by the 2x2 matrix 0 1-1 0
1 rotation = 360 degrees 3/4 rotation = 270 degrees
(-5,3)
270 rule represent a 270 rotation to the left which is very easy
The mapping rule for a rotation of 270 degrees clockwise around the origin can be expressed as (x, y) → (y, -x). This means that the x-coordinate becomes the y-coordinate, and the y-coordinate becomes the negative of the x-coordinate. Essentially, the point is rotated three-quarters of a full turn in the clockwise direction.
To find the image of the point (1, -6) after a 270-degree counterclockwise rotation about the origin, we can use the rotation formula. A 270-degree counterclockwise rotation is equivalent to a 90-degree clockwise rotation. The coordinates transform as follows: (x, y) becomes (y, -x). Therefore, the image of (1, -6) is (-6, -1).
It is (-6, -1).
It is multiplication by the 2x2 matrix 0 1-1 0
A counterclockwise rotation of 270 degrees about the origin is equivalent to a clockwise rotation of 90 degrees. To apply this transformation to a point (x, y), you can use the rule: (x, y) transforms to (y, -x). This means that the x-coordinate becomes the y-coordinate, and the y-coordinate becomes the negative of the x-coordinate.
A rotation of 270 degrees clockwise is equivalent to a rotation of 90 degrees counterclockwise. In a Cartesian coordinate system, this means that a point originally at (x, y) will move to (y, -x) after the rotation. Essentially, it shifts the point three-quarters of the way around the origin in the clockwise direction.
There are 270 degrees in 3/4 of a rotation
A 270-degree counterclockwise rotation around the origin in a Cartesian coordinate system transforms a point ((x, y)) to the new coordinates ((y, -x)). This means the x-coordinate becomes the y-coordinate, and the y-coordinate changes its sign and becomes the new x-coordinate. Essentially, it rotates the point three-quarters of the way around the origin.
3/4 of a rotation or a turn is 270 degrees
To find the image of the point (3, 5) after a rotation of -270 degrees (which is equivalent to a 90-degree rotation clockwise), you can use the rotation formula. The new coordinates will be (y, -x), resulting in the point (5, -3). Thus, the image of the point (3, 5) after a -270-degree rotation is (5, -3).
The answer depends on the centre of rotation. Since this is not given, there can be no answer.