current ratio
Chat with our AI personalities
Most likely in kg, because it would be at least 1 kg.
No, a measurable function may have a finite number of discontinuities (for the Riemann measure), or a countably infinite number of discontinuities (for the Lebesgue measure). It should also be bounded (have some upper and lower bound, or limit, in the domain that is being measured), to be measureable. At least, some unbounded functions are not measurable.No, a measurable function may have a finite number of discontinuities (for the Riemann measure), or a countably infinite number of discontinuities (for the Lebesgue measure). It should also be bounded (have some upper and lower bound, or limit, in the domain that is being measured), to be measureable. At least, some unbounded functions are not measurable.No, a measurable function may have a finite number of discontinuities (for the Riemann measure), or a countably infinite number of discontinuities (for the Lebesgue measure). It should also be bounded (have some upper and lower bound, or limit, in the domain that is being measured), to be measureable. At least, some unbounded functions are not measurable.No, a measurable function may have a finite number of discontinuities (for the Riemann measure), or a countably infinite number of discontinuities (for the Lebesgue measure). It should also be bounded (have some upper and lower bound, or limit, in the domain that is being measured), to be measureable. At least, some unbounded functions are not measurable.
You need only 1 90 degree angle.
standard deviation is the best measure of dispersion because.. a)It measure the absolute dispersion b)It is most frequentlyused as prossesses almost all the the qualities that a good measure of variation have. c)It is beased on all observation. d)It is rigidly defined. e)It is capable of further algebraic treatment. f)It is least affected by the fluctuation of sampling.
Statistically speaking, the mean is the most stable from sample to sample. Whereas, the mode is the least stable statistically speaking from sample to sample.