answersLogoWhite

0

In theory, a quadratic equation can be separated into two factors. For example, in the equation x2 - 5x + 6 = 0, the left part can be factored as (x-3)(x-2) = 0. For the product to be zero, any of the two factors must be zero, so if either x - 3 = 0, or x - 2 = 0, the product is also zero. This gives you the two solutions.

In theory, a quadratic equation can be separated into two factors. For example, in the equation x2 - 5x + 6 = 0, the left part can be factored as (x-3)(x-2) = 0. For the product to be zero, any of the two factors must be zero, so if either x - 3 = 0, or x - 2 = 0, the product is also zero. This gives you the two solutions.

In theory, a quadratic equation can be separated into two factors. For example, in the equation x2 - 5x + 6 = 0, the left part can be factored as (x-3)(x-2) = 0. For the product to be zero, any of the two factors must be zero, so if either x - 3 = 0, or x - 2 = 0, the product is also zero. This gives you the two solutions.

In theory, a quadratic equation can be separated into two factors. For example, in the equation x2 - 5x + 6 = 0, the left part can be factored as (x-3)(x-2) = 0. For the product to be zero, any of the two factors must be zero, so if either x - 3 = 0, or x - 2 = 0, the product is also zero. This gives you the two solutions.

User Avatar

Wiki User

15y ago

Still curious? Ask our experts.

Chat with our AI personalities

JudyJudy
Simplicity is my specialty.
Chat with Judy
BeauBeau
You're doing better than you think!
Chat with Beau
RafaRafa
There's no fun in playing it safe. Why not try something a little unhinged?
Chat with Rafa
More answers

In theory, a quadratic equation can be separated into two factors. For example, in the equation x2 - 5x + 6 = 0, the left part can be factored as (x-3)(x-2) = 0. For the product to be zero, any of the two factors must be zero, so if either x - 3 = 0, or x - 2 = 0, the product is also zero. This gives you the two solutions.

User Avatar

Wiki User

15y ago
User Avatar

Add your answer:

Earn +20 pts
Q: Why are there two solutions to quadratic equations?
Write your answer...
Submit
Still have questions?
magnify glass
imp