When one or both of the integers is/are zero.a*b=0 if a=0, b=0, or both a and b are equal to 0. In other words, if one or both integers are zero.
a + b = a - bSubtract a from each side:+ b = - bThe only way that 'b' can equal its own negative is if b=0.So (a + b) can equal (a - b) only if b=0.(It doesn't matter what 'a' is.)
If a divides b and b divides a then either a is equal to b or a is equal to -b. Additional note: if a divides b, there exist a p such that ap=b. and if b divides a, there exist a q such that a=bq. then ap=(bq)p=b => b(1-pq)=0 => pq=1 since b!=0 => p=q=1 or p=q=-1 => a=b or a=-b
If 'a', 'b' and 'c' are any three numbers, then the properties of addition are:* Associative: the value of a + (b + c) is the same as (a + b) + c;* Additive identity: there exists zero (0) such that a + 0 = a;* Additive inverse: for every number a there is an additive inverse, denoted by (-a), such that a + (-a) = (-a) + a = 0;* Commutative: the value of a + b is the same as b + a;* Closed: the value of a + b is another number in the original set of a and b, for example, if aand b are both integers, then a + b will also be an integer.
VECTOR
If vector equation A + B = 0, it means that vector B is equal in magnitude but opposite in direction to vector A. Therefore, the magnitude of vector B is equal to the magnitude of vector A.
Depends on the situation. Vector A x Vector B= 0 when the sine of the angle between them is 0 Vector A . Vector B= 0 when the cosine of the angle between them is 0 Vector A + Vector B= 0 when Vectors A and B have equal magnitude but opposite direction.
It's impossible as the addition of two vectors is commutative i.e. A+B = B+A.For subtraction of two vectors, you have to subtract a vector B from vector A.The subtraction of the vector B from A is equivalent to the addition of (-B) with A, i.e. A-B = A+(-B).
The zero vector is both parallel and perpendicular to any other vector. V.0 = 0 means zero vector is perpendicular to V and Vx0 = 0 means zero vector is parallel to V.
There is no difference between vector addition and algebraic addition. Algebraic Addition applies to vectors and scalars: [a ,A ] + [b, B] = [a+b, A + B]. Algebraic addition handles the scalars a and b the same as the Vectors A and B
Vector addition is basically similar, with respect to many of its properties, to the addition of real numbers.A + B = B + ASubtraction is the inverse of addition: A - B = A + (-B), where (-B) is the opposite vector to (B).A - B is not usually the same as B - A. Therefore, it is not commutative.However, if you convert it to an addition, you can apply the commutative law: A + (-B) = (-B) + A.
If the vectors a and b are arranged so that the head of a (the arrow bit) is at the tail of b, then c must be from the tail of a to the head of b. The vectors a and b can be swapped since vector addition is commutative.
90 degrees
When b is zero.
Regular Math Addition: 432+53=485 Vector Addition: if u=<a,b> and v=<c,d> then u+v=<a+c,b+d>
1. When the two vectors are parlell the magnitude of resultant vector R=A+B. 2. When the two vectors are having equal magnitude and they are antiparlell then R=A-A=0. For more information: thrinath_dadi@yahoo.com
Vector addition derives a new vector from two or more vectors. The sum of two vectors, A = (a, b) and B = (c,d), is given as S = A+B = (a+c, b+d). Vector resolution should be called something like vector decomposition. It is simply the operation of taking a vector A and writing the components of that vector, (a,b). It's very easy to determine the horizontal and vertical component vectors using trigonometric identities. The vector A starts at the origin and ends at a point (a, b), vector resolution is the method for determining a and b. The lengths a and b can be computed by knowing the length of the original vector A (the magnitude or A) and the angle from the horizontal, theta: a = A*cos(theta), b = A*sin(theta). Going in the other direction, the vector A can be reconstructed knowing only a and b. The magnitude is given by A = sqrt(a*a + b*b). The angle theta is given by solving cos(theta) = a/A (or sin(theta) = b/A). And, in fact, if you take the component vectors a and b, their sum gives the original vector, A = a + b, where a should be thought of as a*i and b = b*j where i and j are unit vectors in x and y directions.Vector addition is when you add two or more vectors together to create a vector sum.