there is no linear equations that has no solution every problem has a solution
A system of equations may have any amount of solutions. If the equations are linear, the system will have either no solution, one solution, or an infinite number of solutions. If the equations are linear AND there are as many equations as variables, AND they are independent, the system will have exactly one solution.
The solution is the coordinates of the point where the graphs of the equations intersect.
Not necessarily.
its a system of equations, with no solution
The values for which the equations are solved. Graphically the intersection of the lines that are the solutions to the individual equations. The link below gives some explanations. The equations themselves will have to be given for a solution to be found.
there is no linear equations that has no solution every problem has a solution
A system of equations with exactly one solution intersects at a singular point, and none of the equations in the system (if lines) are parallel.
A system of equations may have any amount of solutions. If the equations are linear, the system will have either no solution, one solution, or an infinite number of solutions. If the equations are linear AND there are as many equations as variables, AND they are independent, the system will have exactly one solution.
The solution of a system of linear equations is a pair of values that make both of the equations true.
A system of equations will have no solutions if the line they represent are parallel. Remember that the solution of a system of equations is physically represented by the intersection point of the two lines. If the lines don't intersect (parallel) then there can be no solution.
Solving a system of equations by graphing involves plotting the equations on the same coordinate plane and finding the point(s) where the graphs intersect, which represents the solution(s) to the system. Each equation corresponds to a line on the graph, and the intersection point(s) are where the x and y values satisfy both equations simultaneously. This method is visually intuitive but may not always provide precise solutions, especially when dealing with non-linear equations or when the intersection point is not easily identifiable due to the scale or nature of the graphs.
The solution of a system of equations corresponds to the point where the graphs of the equations intersect. If the equations have one unique point of intersection, that point represents the solution of the system. If the graphs are parallel and do not intersect, the system has no solution. If the graphs overlap and coincide, the system has infinitely many solutions.
No because there are no equations there to choose from.
The solution is the coordinates of the point where the graphs of the equations intersect.
If the equations or inequalities have the same slope, they have no solution or infinite solutions. If the equations/inequalities have different slopes, the system has only one solution.
Any solution to a system of linear equations must satisfy all te equations in that system. Otherwise it is a solution to AN equation but not to the system of equations.