Study guides

☆☆

Q: A number a power of a variable or a product of the two is a monomial while a polynomial is the of monomials?

Write your answer...

Submit

Still have questions?

Related questions

Yes 1.3 is 0.05 bigger than 1.25

A number, a variable, or a product of a number and one or more variables. Ex: 3xy,x, and 14 are monomials.

Monomials can have negative exponents, if the term for the exponent is not a variable, but if it is a variable with a negative exponent, the whole expression will not be classified. This is so because the definition of a monomial states that, a monomial can be a product of a number and one or more variables with positive integer exponents. I hope that answered your question!

Distributive

binomal

A monomial is an expression that is either:1) a numeral,2) a variable,or 3) the product of a numeral and one or more variables.A variable can be thought of as the product of the numeral 1 and the variable, thus making it a monomial.

A monomial is a product of positive integer powers of a fixed set of variables. Monomials were invented by Austrian mathematician Bruno Buchberger.

135ab is a monomial, where 135 is its coefficient.A monomial is a number or a variable or a product of numbers and variables.

Monomial has two different meanings;1. is a product of powers of variables.2. The second meaning of monomial includes monomials in the first sense, but also allows multiplication by any constant, so that − 7x5 and (3 − 4i)x4yz13 are also considered to be monomials

A product of variables and numbers. Ex:) 5xIt can only be a product (multiplication). If you have 5 + x, then that would be a binomial because it has two monomials: 5 and x.A monomial is very similar to a term!

The correct answer is Monomial , but you can say Term

Let I=(f1,…,fn) and J=(g1,…,gm) be two ideals generated by regular sequences of monomials in the polynomial ring R=k[x1,x2,…,xu] Show that Δp(IJ)=ΔI∪ΔJ, where p(IJ) is the polarization of IJ, ΔI is the simplicial complex corresponding to the squarefree monomial ideal I, and ΔJ is the simplicial complex corresponding to the squarefree monomial ideal I.

People also asked