follow this formula (x,y)->(-y,x)
Yes, a 270-degree clockwise rotation is the same as a 90-degree counterclockwise rotation. When you rotate an object 270 degrees clockwise, you effectively move it 90 degrees in the opposite direction, which is counterclockwise. Both rotations will result in the same final orientation of the object.
To find the image of the point (1, -6) after a 270-degree counterclockwise rotation about the origin, we can use the rotation formula. A 270-degree counterclockwise rotation is equivalent to a 90-degree clockwise rotation. The coordinates transform as follows: (x, y) becomes (y, -x). Therefore, the image of (1, -6) is (-6, -1).
You went 360o in the same direction, so you end up with a circle.
Rotation preserves shape - therefore the angle before the rotation equals the angle after the rotation.
To find the image of the point (4, 3) after a 90-degree rotation counterclockwise about the origin, you can use the transformation formula for rotation. The new coordinates will be (-y, x), which means the image of the point (4, 3) will be (-3, 4).
To find the image of the point (1, -6) after a 270-degree counterclockwise rotation about the origin, we can use the rotation formula. A 270-degree counterclockwise rotation is equivalent to a 90-degree clockwise rotation. The coordinates transform as follows: (x, y) becomes (y, -x). Therefore, the image of (1, -6) is (-6, -1).
You went 360o in the same direction, so you end up with a circle.
Rotation preserves shape - therefore the angle before the rotation equals the angle after the rotation.
To find the image of the point (4, 3) after a 90-degree rotation counterclockwise about the origin, you can use the transformation formula for rotation. The new coordinates will be (-y, x), which means the image of the point (4, 3) will be (-3, 4).
(x,y) to (x,-y). You would keep the x the same, but turn the y negative. This is actually the rule for a 90 degree counterclockwise rotation, but they're the same thing, they would go to the same coordinates.
A 90 degree rotation is a quarter of a turn.
An equivalent transformation to rotating a figure 90 degrees counterclockwise can be achieved by reflecting the figure across the line (y = x) and then reflecting it across the x-axis. This combination of reflections results in the same final orientation as the 90-degree counterclockwise rotation.
Assume we want to find the ordered pair after 90° counterclockwise rotation. From (x,y), we have (-y,x). If we want to find the ordered pair after 90° clockwise rotation, then from (x,y) we have (y, -x)
The answer will depend on whether the rotation is clockwise or counterclockwise.
To find the image of the point (4, 3) after a -90-degree rotation (which is equivalent to a 90-degree clockwise rotation), you can use the rotation formula: (x', y') = (y, -x). Applying this to the point (4, 3), the new coordinates become (3, -4). Therefore, the image of the point (4, 3) after a -90-degree rotation is (3, -4).
The answer will depend on whether the rotation is clockwise or counterclockwise.
(x,y)-> (-y,x)