Best Answer

Suppose the two rational numbers are x and y.Then (ax + by)/(a+b) where a and b are any positive numbers will be a number between x and y.

More answers

Add them together, divide by two.

Q: How do you find a rational number between two rational numbers?

Write your answer...

Submit

Still have questions?

Continue Learning about Basic Math

Find the arithmetic average of the two rational numbers. It will be a rational number and will be between the two numbers.

There exists infinite number of rational numbers between 0 & -1.

A rational number is any number that, when put into decimal form, terminates after a finite amount of digits OR begins to repeat the same pattern of digits. An easy way to find rational numbers is that any number that can be expressed in a fraction (1/2, 9/4, etc) of two integers.There is an infinite number of rational numbers between any two rational numbers. For example, say we have the numbers 1 and 2. What if you add them and divide by 2? Is that a rational number? Is it between 1 and 2? And to see that there is an infinite number of numbers between 1 and 2, take the number you just found, it is 3/2, now find a number between it and 2. You can keep doing this.

For two rational numbers select any terminating or repeating decimal number which starts with 2.10 and for irrational numbers you require a non-terminating, non-repeating decimal which also starts with 2.10.

Rational numbers are fractions. There are infinitely many fractions between 1 and 100. You cannot list them all.But numbers like 1/2 and 1/3 are rational and so are ones like 7 which is 7/1.If you give me any two rational numbers, say 6/8 and 7/8, I can find a rational number in the middle. Let's just right 6/8 as 12/16 and 7/8 as 14/16 then 13/16 is in the middle of those two. I can do that again with 13/16 and 14/6 by writing them as26/32 and 28/32 and 27/32 in the middle.I am sure you can see how I can keep doing this forever. This illustrates how between any two rational numbers there is always another. In fact, I just pick the number in the middle of the two, but there are many others between any two rational numbers. We say the rational numbers are a dense subset of the real numbers.

Related questions

Find the arithmetic average of the two rational numbers. It will be a rational number and will be between the two numbers.

There exists infinite number of rational numbers between 0 & -1.

Add them together and divide by 2 will give one of the rational numbers between two given rational numbers.

There are an infinite number of rational numbers between any two rational numbers. And 2 and 7 are rational numbers. Here's an example. Take 2 and 7 and find the number halfway between them: (2 + 7)/2 = 9/2, which is rational. Then you can take 9/2 and 2 and find a rational number halfway: 2 + 9/2 = 13/2, then divide by 2 = 13/4. No matter how close the rational numbers become, you can add them together and divide by 2, and the new number will be rational, and be in between the other 2.

Yes. Take the average of the two numbers. Since those two numbers are rational, their average will also be rational.

A rational number is any number that, when put into decimal form, terminates after a finite amount of digits OR begins to repeat the same pattern of digits. An easy way to find rational numbers is that any number that can be expressed in a fraction (1/2, 9/4, etc) of two integers.There is an infinite number of rational numbers between any two rational numbers. For example, say we have the numbers 1 and 2. What if you add them and divide by 2? Is that a rational number? Is it between 1 and 2? And to see that there is an infinite number of numbers between 1 and 2, take the number you just found, it is 3/2, now find a number between it and 2. You can keep doing this.

No. a set of numbers is dense if you always find another number in the set between any two numbers of the set. Since there is no whole number between 4 and 5 the wholes are not dense. The set of rational numbers (fractions) is dense. for example, we can find a nubmer between 2/3 and 3/4 by averaging them and this number (17/24) is once again a rational number. You can always find tha average of two rational numbers and the result is always a rational number, so the ratonals are dense!

See lemma 1.2 from the cut-the-knot link. Yes, you can.

By finding the difference of them

An irrational number is expressed as a non-repeating decimal that goes on forever. Write out the enough of the decimal expansion of each number to find the first digit where the two numbers disagree. Truncate the larger number at that digit, and the result is a rational number (terminating decimal) that is between the two.

A rational number is one that is the ratio of two integers, like 3/4 or 355/113. An irrational number can't be expressed as the ratio of any two integers, and examples are the square root of 2, and pi. Between any two rational numbers there is an irrational number, and between any two irrational numbers there is a rational number.

The answer will depend on whether you want percentage equivalents of rational numbers or one rational number as a percentage of another.