The Degree (for a polynomial with one variable) is the largest exponent of that variable.
The degree of a polynomial is determined by the highest exponent of the variable in the expression. In the polynomial (7x^5), the highest exponent of (x) is 5. Therefore, the degree of the polynomial (7x^5) is 5.
the degree of polynomial is determined by the highest exponent its variable has.
Yes, in a polynomial, the highest degree is determined by the term with the greatest exponent on its variable. For example, in the polynomial (3x^4 + 2x^2 - 5), the highest degree is 4, which comes from the term (3x^4). The degree of a polynomial is significant as it influences the polynomial's behavior and the number of roots it can have.
A linear polynomial has a degree of 1. This means it can be expressed in the form ( ax + b ), where ( a ) and ( b ) are constants and ( a \neq 0 ). The degree of a polynomial is determined by the highest power of the variable in the expression, which in the case of a linear polynomial is 1.
The polynomial can be rewritten as (-4x^3 - 45x^2 + 9x). The degree of the polynomial is 3, which is determined by the highest exponent of (x). The leading coefficient, which is the coefficient of the term with the highest degree, is (-4).
no...
The degree of a polynomial is determined by the highest exponent of the variable in the expression. In the polynomial (7x^5), the highest exponent of (x) is 5. Therefore, the degree of the polynomial (7x^5) is 5.
the degree of polynomial is determined by the highest exponent its variable has.
Yes, in a polynomial, the highest degree is determined by the term with the greatest exponent on its variable. For example, in the polynomial (3x^4 + 2x^2 - 5), the highest degree is 4, which comes from the term (3x^4). The degree of a polynomial is significant as it influences the polynomial's behavior and the number of roots it can have.
A linear polynomial has a degree of 1. This means it can be expressed in the form ( ax + b ), where ( a ) and ( b ) are constants and ( a \neq 0 ). The degree of a polynomial is determined by the highest power of the variable in the expression, which in the case of a linear polynomial is 1.
The polynomial can be rewritten as (-4x^3 - 45x^2 + 9x). The degree of the polynomial is 3, which is determined by the highest exponent of (x). The leading coefficient, which is the coefficient of the term with the highest degree, is (-4).
seventh degree polynomial x3 times x4 = x7
Polynomials are classified based on their degree as follows: a polynomial of degree 0 is a constant polynomial, of degree 1 is a linear polynomial, of degree 2 is a quadratic polynomial, of degree 3 is a cubic polynomial, and of degree 4 is a quartic polynomial. Higher degree polynomials continue with quintic (degree 5), sextic (degree 6), and so on. The degree indicates the highest exponent of the variable in the polynomial.
The degree of a polynomial is determined by the highest exponent of its variable. In the expression (12x^4 - 8x + 4x^2 - 3), the term with the highest exponent is (12x^4), which has a degree of 4. Therefore, the degree of the polynomial is 4.
No. A quadratic polynomial is degree 2 (2 is the highest power); a cubic polynomial is degree 3 (3 is the highest power).No. A quadratic polynomial is degree 2 (2 is the highest power); a cubic polynomial is degree 3 (3 is the highest power).No. A quadratic polynomial is degree 2 (2 is the highest power); a cubic polynomial is degree 3 (3 is the highest power).No. A quadratic polynomial is degree 2 (2 is the highest power); a cubic polynomial is degree 3 (3 is the highest power).
A fourth degree polynomial.
The degree of the polynomial.