Quadratic equations always have 2 solutions. The solutions may be 2 real numbers (think of a parabola crossing the x axis at 2 different points) or it could have a "double root" real solution (think of a parabola just touching the x-axis at its vertex), or it can have complex roots (which will be complex conjugates of each other). For the last scenario, the graph of the parabola will not touch the x axis.
13
There are an infinite number of different quadratic equations. The quadratic formula is a single formula that can be used to find the pair of solutions to every quadratic equation.
Factoring by the AC method, difference of squares, perfect square trinomial. If not factorable by those ways, you can use the quadratic formula. You can also find zeros by synthetic division. If there are not any real solutions, then the solutions are said to be complex, they do not cross the x axis.
The equation is -x2 - 4 = 14 or -x2 = 18 which is the same as x2 = -18. That is the quadratic equation.
Plug 'a', 'b', and 'c' from the equation into the formula. When you do that, the formula becomes a pair of numbers ... one number when you pick the 'plus' sign, and another number when you pick the 'minus' sign. Those two numbers are the 'solutions' to the quadratic equation you started with.
13
0 real solutions. There are other solutions in the complex planes (with i, the imaginary number), but there are no real solutions.
the maximum number of solutions to a quadratic equation is 2. However, usually there is only 1.
There are an infinite number of different quadratic equations. The quadratic formula is a single formula that can be used to find the pair of solutions to every quadratic equation.
A quadratic equation is wholly defined by its coefficients. The solutions or roots of the quadratic can, therefore, be determined by a function of these coefficients - and this function called the quadratic formula. Within this function, there is one part that specifically determines the number and types of solutions it is therefore called the discriminant: it discriminates between the different types of solutions.
Factoring by the AC method, difference of squares, perfect square trinomial. If not factorable by those ways, you can use the quadratic formula. You can also find zeros by synthetic division. If there are not any real solutions, then the solutions are said to be complex, they do not cross the x axis.
The equation is -x2 - 4 = 14 or -x2 = 18 which is the same as x2 = -18. That is the quadratic equation.
Plug 'a', 'b', and 'c' from the equation into the formula. When you do that, the formula becomes a pair of numbers ... one number when you pick the 'plus' sign, and another number when you pick the 'minus' sign. Those two numbers are the 'solutions' to the quadratic equation you started with.
The term inside the square root symbol is called the radicand. There isn't a specific term for it based on its sign; whether it's positive or negative, it's still the radicand.I'm a little confused by your reference to the quadratic equation.If the radicand is negative, the root is an imaginary number, though that doesn't specifically have anything to do with the quadratic equation in particular.If the quantity b2 - 4ac is negative in the quadratic equation, the root of the quadratic equation is either complex or imaginary depending on whether or not b is zero.---------------------------Thank you to whoever answered this first; you saved me a bit of trouble explaining this to the asker :)However, in the quadractic equation, the number under the radical is called the discriminant. This determines the number of solutions of the quadratic. If the radicand is negative, this means that there are no real solutions to the equation.
It depends on the equation. Also, the domain must be such that is supports an infinite number of solutions. A quadratic equation, for example, has no real solution if its discriminant is negative. It cannot have an infinite number of solutions. Many trigonometric equations are periodic and consequently have an infinite number of solutions - provided the domain is also infinite. A function defined as follows: f(x) = 1 if x is real f(x) = 0 if x is not real has no real solutions but an infinite number of solutions in complex numbers.
Because of how close the two are. The only difference between the two is that a complex number is any whole number along side of a fraction, while a real number is any positive number.
It is not always better.Although quadratic equations always have solutions in the complex system, complex solutions might not always make any sense. In such circumstances, sticking to the real number system makes more sense that trying to evaluate an impossible solution in the complex field.