5
Chat with our AI personalities
Suppose p/q and r/s are rational numbers where p, q, r and s are integers and q, s are non-zero.Then p/q + r/s = ps/qs + qr/qs = (ps + qr)/qs.Since p, q, r, s are integers, then ps and qr are integers, and therefore (ps + qr) is an integer.q and s are non-zero integers and so qs is a non-zero integer.Consequently, (ps + qr)/qs is a ratio of two integers in which the denominator is non-zero. That is, the sum is rational.Also p/q * r/s = pr/qs.Since p, q, r, s are integers, then pr and qs are integers.q and s are non-zero integers so qs is a non-zero integer.Consequently, pr/qs is a ratio of two integers in which the denominator is non-zero. That is, the sum is rational.
x² + 4x - 18y + 59 = 0 is not a circle; it can be rearranged into: y = (x² + 4x + 59)/18 which is a parabola. You have missed out a y² term. ------------------------------------------------------------ Assuming you meant: x² + 4x + y² - 18y + 59 = 0, then: The perpendicular bisector of a chord passes through the centre of the circle. The slope m' of a line perpendicular to another line with slope m is given by m' = -1/m The chord y = x + 5 has slope m = 1 → the perpendicular bisector has slope m' = -1/1 = -1 A circle with centre Xc, Yc and radius r has an equation in the form: (x - Xc)² + (y - Yc)² = r² The equation given for the circle can be rearrange into this form by completing the square in x and y: x² + 4x + y² - 18y + 59 = 0 → (x + (4/2))² - (4/2)² + (y - (18/2))² - (18/2)² + 59 = 0 → (x + 2)² +(y - 9)² - 2² - 9² + 59 = 0 → (x + 2)² + (y - 9)² = 4 + 81 - 59 → the circle has centre (-2, 9) (The radius, if wanted, is given by r² = 4 + 81 - 59 = 36 = 6²) The equation of a line with slope m' through a point (Xc, Yc) has equation: y - Yc = m'(x - Xc) → y - 9 = -1(x - -2) → y - 9 = -x - 2 → y + x = 7 The perpendicular bisector of the chord y = x + 5 within the circle x² + 4x + y² - 18y + 59 = 0 is y + x = 7
Suppose x and y are two rational number.Then x = p/q and y = r/s where p, q, r and s are integers, with q and s being non-zero. Then x - y = p/q - r/s = pq/qs - qr/qs = (pq - rs)/qs. The signs of x and y do not matter, in so far as their signs will be used to determine the signs of p,q, r and s.
Suppose x and y are two rational numbers. Therefore x = p/q and y = r/s where p, q, r and s are integers and q and s are not zero.Then x - y = p/q - r/s = ps/qs - qr/qs = (ps - qr)/qsBy the closure of the set of integers under multiplication, ps, qr and qs are all integers,by the closure of the set of integers under subtraction, (ps - qr) is an integer,and by the multiplicative properties of 0, qs is non zero.Therefore (ps - qr)/qs satisfies the requirements of a rational number.
Lines r and m are parallel or line r is line m continued