It works out that the points of intersection between the equations of 2x+5 = 5 and x^2 -y^2 = 3 are at: (14/3, -13/3) and (2, 1)
If 3x -5y = 16 and xy = 7 then by combining both equations into a single quadratic equation and solving it then the points of intersection are at (-5/3, -21/5) and (7, 1)
Equations: x -y = 2 and x^2 -4y^2 = 5 By combining the equations into a single quadratic equation in terms of y and solving it: y = 1/3 or y = 1 By means of substitution the points of intersection are at: (7/3, 1/3) and (3, 1)
We believe that those equations have no real solutions, and that their graphs therefore have no points of intersection.
The points of intersection. The coordinates of such points will be the solutions to the simultaneous equations representing the curves.
The points of intersection are: (7/3, 1/3) and (3, 1)
The points of intersection of the equations 4y^2 -3x^2 = 1 and x -2 = 1 are at (0, -1/2) and (-1, -1)
If 3x -5y = 16 and xy = 7 then by combining both equations into a single quadratic equation and solving it then the points of intersection are at (-5/3, -21/5) and (7, 1)
The points of intersection are normally the solutions of the equations for x and y
Equations: x -y = 2 and x^2 -4y^2 = 5 By combining the equations into a single quadratic equation in terms of y and solving it: y = 1/3 or y = 1 By means of substitution the points of intersection are at: (7/3, 1/3) and (3, 1)
We believe that those equations have no real solutions, and that their graphs therefore have no points of intersection.
The points of intersection. The coordinates of such points will be the solutions to the simultaneous equations representing the curves.
The points of intersection are: (7/3, 1/3) and (3, 1)
Points of intersection work out as: (3, 4) and (-1, -2)
6 maximum points of intersection
The points are (-1/3, 5/3) and (8, 3).Another Answer:-The x coordinates work out as -1/3 and 8Substituting the x values into the equations the points are at (-1/3, 13/9) and (8, 157)
2
You take each equation individually and then, on a graph, show all the points whose coordinates satisfy the equation. The solution to the system of equations (if one exists) consists of the intersection of all the sets of points for each single equation.