an arithmetic sequeunce does not have the sum to infinty, and a geometric sequence has.
because starwars is awesome
The common difference does not tell you the location of the sequence. For example, 3, 6, 9, 12, ... and 1, 4, 7, 10, .., or 1002, 1005, 1008, 1011, ... all have a common difference of 3 but it should be clear that the three sequences are different. A common difference is applicable to arithmetic sequences, not others such as geometric or exponential sequences.
A Postulate,
There is no simple answer. There are simple formulae for simple sequences such as arithmetic or geometric progressions; there are less simple solutions arising from Taylor or Maclaurin series. But for the majority of sequences there are no solutions.
how are arithmetic and geometric sequences similar
Exponentail functions
There can be no solution to geometric sequences and series: only to specific questions about them.
an arithmetic sequeunce does not have the sum to infinty, and a geometric sequence has.
Follow this method:
because starwars is awesome
There aren't any. Geometric is an adjective and you need a noun to go with it before it is possible to consider answering the question. There are geometric sequences, geometric means, geometric theories, geometric shapes. I cannot guess what your question is about.
yes a geometic sequence can be multiplication or division
An arithmetic-geometric mean is a mean of two numbers which is the common limit of a pair of sequences, whose terms are defined by taking the arithmetic and geometric means of the previous pair of terms.
Some of them are demographics, to forecast population growth; physicists and engineers, to work with mathematical functions that include geometric sequences; mathematicians; teachers of mathematics, science, and engineering; and farmers and ranchers, to predict crop growth and corresponding revenue growth.
There is no single rule. Furthermore, some rules can be extremely complicated.
The common difference does not tell you the location of the sequence. For example, 3, 6, 9, 12, ... and 1, 4, 7, 10, .., or 1002, 1005, 1008, 1011, ... all have a common difference of 3 but it should be clear that the three sequences are different. A common difference is applicable to arithmetic sequences, not others such as geometric or exponential sequences.