In a Geometric Sequence each term is found by multiplying the previous term by a common ratio except the first term and the general rule is ar^(n-1) whereas a is the first term, r is the common ratio and (n-1) is term number minus 1
Chat with our AI personalities
The general rule is that the ratio between any two consecutive items in the sequence is always the same.
an arithmetic sequeunce does not have the sum to infinty, and a geometric sequence has.
because starwars is awesome
A Postulate,
The common difference does not tell you the location of the sequence. For example, 3, 6, 9, 12, ... and 1, 4, 7, 10, .., or 1002, 1005, 1008, 1011, ... all have a common difference of 3 but it should be clear that the three sequences are different. A common difference is applicable to arithmetic sequences, not others such as geometric or exponential sequences.
There is no simple answer. There are simple formulae for simple sequences such as arithmetic or geometric progressions; there are less simple solutions arising from Taylor or Maclaurin series. But for the majority of sequences there are no solutions.